1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
|
/*
*
* mur.sat
*
* Somewhen in the year 2012, mur.at will have a nano satellite launched
* into a low earth orbit (310 km above the surface of our planet). The
* satellite itself is a TubeSat personal satellite kit, developed and
* launched by interorbital systems. mur.sat is a joint venture of mur.at,
* ESC im Labor and realraum.
*
* Please visit the project hompage at sat.mur.at for further information.
*
*
* Copyright (C) 2012 Bernhard Tittelbach <xro@realraum.at>
*
* This file is part of mur.sat.
*
* mur.sat is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* mur.sat is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with mur.sat. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <avr/io.h>
#include <util/delay.h>
#include "c1101lib.h"
#include "hhd70.h"
#include "util.h"
/**** Helper Functions ****/
#define SPIC1101_MAX_WAIT 21
/* ###### ######
LUFA Library
Copyright (C) Dean Camera, 2012.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
//#include <LUFA/Drivers/Misc/RingBuffer.h>
#include <LUFA/Drivers/USB/USB.h>
/* Global I/O Buffers: */
//static RingBuffer_t SPItoUSB_Buffer;
//static uint8_t SPItoUSB_Buffer_Data[8];
/** LUFA CDC Class driver interface configuration and state information. This structure is
* passed to all CDC Class driver functions, so that multiple instances of the same class
* within a device can be differentiated from one another.
*/
extern USB_ClassInfo_CDC_Device_t VirtualSerial_CDC_Interface;
/* ###### end LUFA CDC-ACM specific definitions ###### */
int16_t c1101_spi_write_byte_ok_get_status(char data)
{
//~ uint8_t debug_sb[6];
char sb;
unsigned int attempts = 0;
do
{
sb = hhd70_spi_exchange_byte(data);
//Note: content of returned StatusByte is actually context depenedant on sent command
// i.e. we won't get Fifo Byte count or overflow status on normal command and so on
// e.g. we only get TX Fifo Free Byte count while writing to TX Fifo
// thus it makes sense to only check for CHIP_RDY here
//~ ((uint8_t*)"spi byte exchanged ",255);
//~ debug_sprint_int16hex(debug_sb, sb);
//~ (debug_sb,255);
if (attempts++ > SPIC1101_MAX_WAIT)
return -1;
} while ( SPIC1101_SB_CHIP_NOT_RDY(sb) );
return sb;
}
int16_t c1101_spi_strobe_command(char address)
{
char rbyte;
if (address < 0x30)
return -1;
hhd70_spi_cs_enable();
hhd70_c1101_wait_chip_rdy();
//POST DEBUG: don't return anything
rbyte = c1101_spi_write_byte_ok_get_status(address);
if (rbyte < 0)
return -1;
hhd70_spi_cs_disable();
return rbyte;
}
// note addresses range from 0x00 to 0x2F for normal registers and 0xF0 to 0xFD for special status registers
int16_t c1101_spi_read_register(char address)
{
char rbyte;
if (address < 0x30)
address |= 0x80;
else
address |= 0xC0;
hhd70_spi_cs_enable();
hhd70_c1101_wait_chip_rdy();
if (c1101_spi_write_byte_ok_get_status(address) < 0)
return -1;
rbyte = hhd70_spi_read_byte();
hhd70_spi_cs_disable();
return rbyte;
}
// note addresses range from 0x00 to 0x2F for normal registers
int16_t c1101_spi_write_register(char address, char byte)
{
hhd70_spi_cs_enable();
hhd70_c1101_wait_chip_rdy();
if (c1101_spi_write_byte_ok_get_status(address & 0x3F) < 0)
return -1;
_delay_ms(2);
if (c1101_spi_write_byte_ok_get_status(byte) < 0)
return -1;
hhd70_spi_cs_disable();
return 1;
}
void c1101_spi_dump_registers_to_usb(void)
{
int c = 0;
char debug_sb[6];
hhd70_spi_cs_enable();
hhd70_c1101_wait_chip_rdy();
if (c1101_spi_write_byte_ok_get_status(0xC0) < 0)
return;
CDC_Device_SendString(&VirtualSerial_CDC_Interface,"dump all 46 registers:");
for (c=0; c<47; c++)
{
debug_sprint_int16hex(debug_sb, hhd70_spi_read_byte());
CDC_Device_SendString(&VirtualSerial_CDC_Interface, debug_sb);
}
hhd70_spi_cs_disable();
}
int c1101_spi_read_rxfifo(int leave_num_bytes, char *buffer, int maxlen)
{
int num_read = 0;
uint8_t num_available = 0;
hhd70_spi_cs_enable();
hhd70_c1101_wait_chip_rdy();
if (c1101_spi_write_byte_ok_get_status(SPIC1101_ADDR_RXBYTES) < 0)
return -1;
num_available = hhd70_spi_read_byte();
if (num_available == 0)
return 0;
if (c1101_spi_write_byte_ok_get_status(SPIC1101_ADDR_FIFO_READ_BURST) < 0)
return -1;
while (maxlen-- > 0 && num_available - num_read > leave_num_bytes)
{
buffer[num_read++] = hhd70_spi_read_byte();
}
hhd70_spi_cs_disable();
return num_read;
}
//note: currently this function reads at most 15 bytes
int c1101_spi_read_rxfifo_max15(int leave_num_bytes, char *buffer, int maxlen)
{
int16_t sb;
int num_read = 0;
hhd70_spi_cs_enable();
hhd70_c1101_wait_chip_rdy();
sb = c1101_spi_write_byte_ok_get_status(SPIC1101_ADDR_FIFO_READ_BURST);
if (sb < 0)
return -1;
//note if SPIC1101_SB_FIFO_BYTES_AVAILABLE(sb) == 15 then 15 or more bytes are available
while (maxlen-- > 0 && SPIC1101_SB_FIFO_BYTES_AVAILABLE(sb) - num_read > leave_num_bytes)
{
//hope this works !!
buffer[num_read++] = hhd70_spi_read_byte();
}
hhd70_spi_cs_disable();
return num_read;
}
//note: always check if num_written returned == len given
int c1101_spi_write_txfifo(char *buffer, int len)
{
char sb;
int num_written = 0;
hhd70_spi_cs_enable();
hhd70_c1101_wait_chip_rdy();
sb = c1101_spi_write_byte_ok_get_status(SPIC1101_ADDR_FIFO_WRITE_BURST);
if (sb < 0)
return -1;
while (len-- > 0 && SPIC1101_SB_FIFO_BYTES_AVAILABLE(sb) > 2)
{
sb = c1101_spi_write_byte_ok_get_status(buffer[num_written++]);
}
hhd70_spi_cs_disable();
return num_written;
}
/**** External Functions ****/
void c1101_init(void)
{
//reset C1101
c1101_spi_strobe_command(SPIC1101_ADDR_SRES);
_delay_ms(100);
//flush FIFOs
c1101_spi_strobe_command(SPIC1101_ADDR_SFRX);
c1101_spi_strobe_command(SPIC1101_ADDR_SFTX);
//dump pre-init default values to usb
c1101_spi_dump_registers_to_usb();
//enable analog temperature sensor on GDO0
c1101_spi_write_register(SPIC1101_ADDR_IOCFG0, 0x80);
//enable RX FIFO interrupt (i.e. GPO2 pulls high if >= FIFOTHR bytes are in RX FIFO)
c1101_spi_write_register(SPIC1101_ADDR_IOCFG2, 0);
// FIFOTHR RX FIFO and TX FIFO Thresholds
// pull GPO high (interrupt) if more than 12 bytes in rx buffer (or less than 53 in tx)
c1101_spi_write_register(SPIC1101_ADDR_FIFOTHR, 2);
// PKTCTRL0 Packet Automation Control
//c1101_spi_write_register(SPIC1101_ADDR_PKTCTRL0, 0b0000000010); //crc disabled; use FIFOs; infinite packet length mode
c1101_spi_write_register(SPIC1101_ADDR_PKTCTRL0, 0b0000000001); //crc disabled; use FIFOs; variable packet length mode (first TX FIFO byte must be length)
c1101_spi_write_register(SPIC1101_ADDR_PKTCTRL1, 0x00); //no address check, no append rssi and crc_ok to packet
// FSCTRL1 Frequency Synthesizer Control
c1101_spi_write_register(SPIC1101_ADDR_FSCTRL1, 0x06);
// FREQn Frequency Control Words
c1101_spi_write_register(SPIC1101_ADDR_FREQ2, 0x10); //should be 435.125 mhz
c1101_spi_write_register(SPIC1101_ADDR_FREQ1, 0xBF);
c1101_spi_write_register(SPIC1101_ADDR_FREQ0, 0xEF);
c1101_spi_write_register(SPIC1101_ADDR_FSCTRL0, 0); //frequency offset
// MDMCFGn Modem Configuration
c1101_spi_write_register(SPIC1101_ADDR_MDMCFG4, 0xF8);
c1101_spi_write_register(SPIC1101_ADDR_MDMCFG3, 0x83);
c1101_spi_write_register(SPIC1101_ADDR_MDMCFG2, 0x12); //gfsk, 15/16 sync word
c1101_spi_write_register(SPIC1101_ADDR_MDMCFG1, 0x00);
//Sync Word
c1101_spi_write_register(SPIC1101_ADDR_SYNC1, 0x21);
c1101_spi_write_register(SPIC1101_ADDR_SYNC0, 0x42);
// DEVIATN Modem Deviation Setting
c1101_spi_write_register(SPIC1101_ADDR_DEVIATN, 0x07);
// MCSM0 Main Radio Control State Machine Configuration
c1101_spi_write_register(SPIC1101_ADDR_MCSM0, 0x18);
c1101_spi_write_register(SPIC1101_ADDR_MCSM1, 0b00111100); // State RX after recieving packet-> stay in RX; State TX after sending packet -> IDLE
// FOCCFG Frequency Offset Compensation Configuration
c1101_spi_write_register(SPIC1101_ADDR_FOCCFG, 0x16);
// WORCTRL Wake On Radio Control
c1101_spi_write_register(SPIC1101_ADDR_WORCTRL, 0xFB);
// FSCALn Frequency Synthesizer Calibration
c1101_spi_write_register(SPIC1101_ADDR_FSCAL3, 0xE9);
c1101_spi_write_register(SPIC1101_ADDR_FSCAL2, 0x2A);
c1101_spi_write_register(SPIC1101_ADDR_FSCAL1, 0x00);
c1101_spi_write_register(SPIC1101_ADDR_FSCAL0, 0x1F);
// note: for now: assume f_xosc to be 26 Mhz
// for ~433.125 Mhz -> freq = 1091741, freq_offset = 0
//c1101_setFrequency(1091741,0,15);
}
//f_XOSC = 26Mhz
// freq: desired_carrier_freq [Hz] *2^16 / f_XOSC
// freq_offset: desired frequency offset [Hz] *2^14 / f_XOSC
// if_freq: desired intermidiate rx frequency [Hz] *2^10 / f_XOSC
void c1101_setFrequency(uint32_t freq, uint8_t freq_offset, uint8_t if_freq)
{
//make sure we are in idle mode
char sb=0;
do
{
sb = c1101_getStatus();
} while (! (SPIC1101_SB_IDLE(sb)));
//programm frequency
c1101_spi_write_register(SPIC1101_ADDR_FREQ0, freq & 0xFF);
c1101_spi_write_register(SPIC1101_ADDR_FREQ1, (freq >> 8) & 0xFF);
c1101_spi_write_register(SPIC1101_ADDR_FREQ2, (freq >> 16) & 0x3F);
//set frequency offset
c1101_spi_write_register(SPIC1101_ADDR_FSCTRL0, freq_offset);
//c1101_spi_write_register(SPIC1101_ADDR_FSCTRL1, if_freq & 0x1F);
//set channel 0
c1101_spi_write_register(SPIC1101_ADDR_CHANNR, 0);
}
char c1101_putToSleep(void)
{
return c1101_spi_strobe_command(SPIC1101_ADDR_SPWD);
}
uint16_t c1101_measureTemp(void)
{
uint16_t temp;
char ptest_value=0x7F;
ptest_value = c1101_spi_read_register(SPIC1101_ADDR_PTEST);
c1101_spi_write_register(SPIC1101_ADDR_PTEST, 0xBF);
_delay_ms(5);
temp = adc_read(ADCMUX_INTERNALTEMP);
c1101_spi_write_register(SPIC1101_ADDR_PTEST, ptest_value);
return temp;
}
void c1101_handleStatusByte(char sb)
{
//on RXFifo Overflow, Flush RX Fifo
if (SPIC1101_SB_RXFIFO_OVERFLOW(sb))
{
c1101_spi_strobe_command(SPIC1101_ADDR_SFRX);
CDC_Device_SendString(&VirtualSerial_CDC_Interface,"RX fifo flushed");
}
//on TXFifo Overflow, Flush TX Fifo
if (SPIC1101_SB_TXFIFO_OVERFLOW(sb))
{
c1101_spi_strobe_command(SPIC1101_ADDR_SFTX);
CDC_Device_SendString(&VirtualSerial_CDC_Interface,"TX fifo flushed");
}
}
char c1101_getStatus(void)
{
char sb=0;
hhd70_spi_cs_enable();
hhd70_c1101_wait_chip_rdy();
sb = c1101_spi_write_byte_ok_get_status(SPIC1101_ADDR_SNOP);
hhd70_spi_cs_disable();
//debug start
char debug_sb[6];
CDC_Device_SendString(&VirtualSerial_CDC_Interface,"c1101 status:");
debug_sprint_int16hex(debug_sb, sb);
CDC_Device_SendString(&VirtualSerial_CDC_Interface,debug_sb);
//debug end
c1101_handleStatusByte(sb);
return sb;
}
char c1101_getMARCState(void)
{
char sb=0;
sb = c1101_spi_read_register(SPIC1101_ADDR_MARCSTATE);
sb &= 0x1F;
//debug start
char debug_sb[6];
CDC_Device_SendString(&VirtualSerial_CDC_Interface,"c1101 MARCSate:");
debug_sprint_int16hex(debug_sb, sb);
CDC_Device_SendString(&VirtualSerial_CDC_Interface,debug_sb);
//debug end
return sb;
}
uint8_t c1101_getNumBytesInTXFifo(void)
{
return c1101_spi_read_register(SPIC1101_ADDR_TXBYTES);
}
void c1101_transmitData(char *buffer, unsigned int len)
{
//~ uint8_t debug_sb[6];
uint8_t num_written = 0;
//~ uint8_t mcsm1 = c1101_spi_read_register(SPIC1101_ADDR_MCSM1);
//~ //configure state machine to automatically go to IDLE, once packet was transmitted
//~ mcsm1 = (mcsm1 & 0b11111100) | 0b00;
//~ c1101_spi_write_register(SPIC1101_ADDR_MCSM1, 0x18);
//~ c1101_spi_write_register(SPIC1101_ADDR_PKTCTRL0, 0b0000000001); //crc disabled; use FIFOs; variable packet length mode (first TX FIFO byte must be length)
// flush TX FIFO
num_written = c1101_spi_strobe_command(SPIC1101_ADDR_SFTX);
num_written = (uint8_t) len;
//variable packet length: write length of packet to TX FIFO:
c1101_spi_write_txfifo((char*) &num_written, 1);
//~ //fill buffer
//~ num_written = c1101_spi_write_txfifo(buffer, len);
//~ buffer += num_written;
//~ len -= num_written;
//~ ((uint8_t*)"TX num written",255);
//~ debug_sprint_int16hex(debug_sb, num_written);
//~ (debug_sb,255);
//~ ((uint8_t*)"TX len",255);
//~ debug_sprint_int16hex(debug_sb, len);
//~ (debug_sb,255);
//~ c1101_getStatus();
//~ ((uint8_t*)"TX bytes",255);
//~ debug_sprint_int16hex(debug_sb, c1101_getNumBytesInTXFifo());
//~ (debug_sb,255);
//start transmitting
//num_written = c1101_spi_strobe_command(SPIC1101_ADDR_STX);
//~ num_written = hhd70_spi_exchange_byte(SPIC1101_ADDR_STX);
//~ ((uint8_t*)"Strobe STX",255);
//~ debug_sprint_int16hex(debug_sb, num_written);
//~ (debug_sb,255);
//enable Power Amplifier
hhd70_palna_txmode();
//keep buffer filled
uint8_t c1101_state=0;
do
{
c1101_getStatus();
num_written = c1101_spi_write_txfifo(buffer, len );
buffer += num_written;
len -= num_written;
c1101_state = c1101_getMARCState();
if (c1101_state == 1 || (c1101_state >= 13 && c1101_state <= 15))
{
//from state IDLE or RX go to TX
num_written = c1101_spi_strobe_command(SPIC1101_ADDR_STX);
//~ ((uint8_t*)"Strobe STX",255);
//~ debug_sprint_int16hex(debug_sb, num_written);
//~ (debug_sb,255);
}
//~ ((uint8_t*)"TX2 num written",255);
//~ debug_sprint_int16hex(debug_sb, num_written);
//~ (debug_sb,255);
//~ ((uint8_t*)"TX2 len",255);
//~ debug_sprint_int16hex(debug_sb, len);
//~ (debug_sb,255);
//~ ((uint8_t*)"TX2 bytes",255);
//~ debug_sprint_int16hex(debug_sb, c1101_getNumBytesInTXFifo());
//~ (debug_sb,255);
} while (len > 0);
//disable Power Amplifier
//FIXME, instead use PTT function of GPO0 -> interrupt handler -> toggle rx/tx
//wait until RX finished
do
{
c1101_state = c1101_getMARCState();
_delay_ms(1);
}
while (c1101_state == 19 || c1101_state == 20);
hhd70_palna_rxmode();
}
void c1101_recieveData(void)
{
uint8_t const max_len=255;
char recv_data[256];
uint8_t num_recv = 0;
uint8_t num_recv_total = 0;
uint8_t num_leave_in_fifo = 1;
do
{
num_recv = c1101_spi_read_rxfifo( num_leave_in_fifo, recv_data+num_recv_total, max_len - num_recv_total);
num_recv_total += num_recv;
//variable packet length:
//don't read last byte in fifo unless packet has finished receiving
num_leave_in_fifo = (recv_data[0] - num_recv_total < 64)? 0 : 1;
} while (num_recv > 0);
recv_data[num_recv_total]=0;
CDC_Device_SendString(&VirtualSerial_CDC_Interface,"RX: Data Recieved:");
CDC_Device_SendString(&VirtualSerial_CDC_Interface,recv_data);
c1101_getStatus(); // get status and handle possiblble RX Fifo Overflow
}
//max returned: 64 bytes
int c1101_readRXFifo(char *buffer)
{
//check RXBYTES.NUM_RXBYTES
// never read more bytes than avaiblabe or we will read garbage
//note: if RX transmission fills fifo buffer at exact same time as last RX Fifo Bit is read via SPI, Fifo Pointer will not be properly updated
// and last read byte will be duplicated.
// thus: don't last avialable FIFO Bytes unless we can be sure that it will be the last byte of a packet and we can be sure that a following duplicated byte is actually an Fifo duplication and not an actually recieved byte !
return 0;
}
|