summaryrefslogtreecommitdiff
path: root/software/hhd70dongle/c1101lib.c
blob: a80fa499f2e08a7fea4245c7ce394ad19de1347f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/*
 *
 *  mur.sat
 *
 *  Somewhen in the year 2012, mur.at will have a nano satellite launched
 *  into a low earth orbit (310 km above the surface of our planet). The
 *  satellite itself is a TubeSat personal satellite kit, developed and
 *  launched by interorbital systems. mur.sat is a joint venture of mur.at,
 *  ESC im Labor and realraum.
 *
 *  Please visit the project hompage at sat.mur.at for further information.
 *
 *
 *  Copyright (C) 2012 Bernhard Tittelbach <xro@realraum.at>
 *
 *  This file is part of mur.sat.
 *
 *  mur.sat is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  any later version.
 *
 *  mur.sat is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with mur.sat. If not, see <http://www.gnu.org/licenses/>.
 *
 */
#include <avr/io.h>
#include <util/delay.h>

#include "c1101lib.h"
#include "spi.h"
#include "usb_rawhid.h"
#include "util.h"

/**** Helper Functions ****/

#define SPIC1101_MAX_WAIT 21

int16_t spi_c1101_write_byte_ok_get_status(char data)
{
    //~ uint8_t debug_sb[6];
    char sb;
    unsigned int attempts = 0;
    do
    {
        sb = spi_exchange_byte(data);
        //Note: content of returned StatusByte is actually context depenedant on sent command
        //            i.e. we won't get Fifo Byte count or overflow status on normal command and so on
        //            e.g. we only get TX Fifo Free Byte count while writing to TX Fifo
        //            thus it makes sense to only check for CHIP_RDY here
        //~ usb_rawhid_send((uint8_t*)"spi byte exchanged ",255);
        //~ debug_sprint_int16hex(debug_sb, sb);
        //~ usb_rawhid_send(debug_sb,255);
        if (attempts++ > SPIC1101_MAX_WAIT)
            return -1;
    } while ( SPIC1101_SB_CHIP_NOT_RDY(sb) );
    return sb;
}

int16_t spi_c1101_strobe_command(char address)
{
    char rbyte;
    if (address < 0x30)
        return -1;
    spi_cs_enable();
    spi_c1101_wait_chip_rdy();
    //POST DEBUG: don't return anything
    rbyte = spi_c1101_write_byte_ok_get_status(address);
    if (rbyte < 0)
        return -1;
    spi_cs_disable();
    return rbyte;
}

// note addresses range from 0x00 to 0x2F for normal registers and 0xF0 to 0xFD for special status registers
int16_t spi_c1101_read_register(char address)
{
    char rbyte;
    if (address < 0x30)
        address |= 0x80;
    else
        address |= 0xC0;
    spi_cs_enable();
    spi_c1101_wait_chip_rdy();
    if (spi_c1101_write_byte_ok_get_status(address) < 0)
        return -1;
    rbyte = spi_read_byte();
    spi_cs_disable();
    return rbyte;
}

// note addresses range from 0x00 to 0x2F for normal registers
int16_t spi_c1101_write_register(char address, char byte)
{
    spi_cs_enable();
    spi_c1101_wait_chip_rdy();
    if (spi_c1101_write_byte_ok_get_status(address & 0x2F) < 0)
        return -1;
    _delay_ms(2);
    if (spi_c1101_write_byte_ok_get_status(byte) < 0)
        return -1;
    spi_cs_disable();
    return 1;
}

void spi_c1101_dump_registers_to_usb(void)
{
    int c = 0;
    uint8_t debug_sb[6];
    spi_cs_enable();
    spi_c1101_wait_chip_rdy();
    if (spi_c1101_write_byte_ok_get_status(0xC0) < 0)
        return;
    usb_rawhid_send((uint8_t*)"dump all 46 registers:",255);
    for (c=0; c<47; c++)
    {
        debug_sprint_int16hex(debug_sb, spi_read_byte());
        usb_rawhid_send(debug_sb,255);
    }
    spi_cs_disable();
}

//note: currently this function reads at most 15 bytes
int spi_c1101_read_rxfifo(int leave_num_bytes, char *buffer, int maxlen)
{
    int16_t sb;
    int num_read = 0;
    int num_fifo_available = 0;
    spi_cs_enable();
    spi_c1101_wait_chip_rdy();
    sb = spi_c1101_write_byte_ok_get_status(SPIC1101_ADDR_FIFO_READ_BURST);
    if (sb < 0)
        return -1;
    num_fifo_available = SPIC1101_SB_FIFO_BYTES_AVAILABLE(sb);
    //note if num_fifo_available  == 15 then 15 or more bytes are available
    //FIXTHIS
    while (maxlen-- && num_fifo_available - num_read <= leave_num_bytes)
    {
        //hope this works !!
        buffer[num_read++] = spi_read_byte();
    }
    spi_cs_disable();
    return num_read;
}

//note: always check if num_written returned == len given
int spi_c1101_write_txfifo(char *buffer, int len)
{
    char sb;
    int num_written = 0;
    spi_cs_enable();
    spi_c1101_wait_chip_rdy();
    sb = spi_c1101_write_byte_ok_get_status(SPIC1101_ADDR_FIFO_WRITE_BURST);
    if (sb < 0)
        return -1;
    uint8_t debug_sb[6];
    while (len-- > 0 && SPIC1101_SB_FIFO_BYTES_AVAILABLE(sb) > 2)
    {
        usb_rawhid_send((uint8_t*)"TXFifo bytes available",255);
        debug_sprint_int16hex(debug_sb, SPIC1101_SB_FIFO_BYTES_AVAILABLE(sb));
        usb_rawhid_send(debug_sb,255);
        sb = spi_c1101_write_byte_ok_get_status(buffer[num_written++]);
    }
    spi_cs_disable();
    return num_written;
}



/**** External Functions ****/

void c1101_init(void)
{
    //reset C1101
    spi_c1101_strobe_command(SPIC1101_ADDR_SRES);
    _delay_ms(100);
    //flush FIFOs
    spi_c1101_strobe_command(SPIC1101_ADDR_SFRX);
    spi_c1101_strobe_command(SPIC1101_ADDR_SFTX);
    //dump pre-init default values to usb
    spi_c1101_dump_registers_to_usb();
    //enable analog temperature sensor on GDO0
    spi_c1101_write_register(SPIC1101_ADDR_IOCFG0, 0x80);
    //enable RX FIFO interrupt (i.e. GPO1 pulls high if >= FIFOTHR bytes are in RX FIFO)
    spi_c1101_write_register(SPIC1101_ADDR_IOCFG1, 0);
    // FIFOTHR       RX FIFO and TX FIFO Thresholds
    // pull GPO high (interrupt) if more than 12 bytes in rx buffer (or less than 53 in tx)
    spi_c1101_write_register(SPIC1101_ADDR_FIFOTHR, 2);
    // PKTCTRL0      Packet Automation Control
    spi_c1101_write_register(SPIC1101_ADDR_PKTCTRL0, 0b0000000010); //crc disabled; use FIFOs; infinite packet length mode
    //spi_c1101_write_register(SPIC1101_ADDR_PKTCTRL0, 0b0000000001); //crc disabled; use FIFOs; variable packet length mode (first TX FIFO byte must be length)
    spi_c1101_write_register(SPIC1101_ADDR_PKTCTRL1, 0x00); //no address check, no append rssi and crc_ok to packet
    // FSCTRL1       Frequency Synthesizer Control
    spi_c1101_write_register(SPIC1101_ADDR_FSCTRL1, 0x06);
    // FREQn         Frequency Control Words
    spi_c1101_write_register(SPIC1101_ADDR_FREQ2, 0x10);
    spi_c1101_write_register(SPIC1101_ADDR_FREQ1, 0xD3);
    spi_c1101_write_register(SPIC1101_ADDR_FREQ0, 0xB1);
    // MDMCFGn       Modem Configuration
    spi_c1101_write_register(SPIC1101_ADDR_MDMCFG4, 0xF8);
    spi_c1101_write_register(SPIC1101_ADDR_MDMCFG3, 0x83);
    spi_c1101_write_register(SPIC1101_ADDR_MDMCFG2, 0x13);
    spi_c1101_write_register(SPIC1101_ADDR_MDMCFG1, 0x00);
    // DEVIATN       Modem Deviation Setting
    spi_c1101_write_register(SPIC1101_ADDR_DEVIATN, 0x07);
    // MCSM0         Main Radio Control State Machine Configuration
    spi_c1101_write_register(SPIC1101_ADDR_MCSM0, 0x18);
    // FOCCFG        Frequency Offset Compensation Configuration
    spi_c1101_write_register(SPIC1101_ADDR_FOCCFG, 0x16);
    // WORCTRL       Wake On Radio Control
    spi_c1101_write_register(SPIC1101_ADDR_WORCTRL, 0xFB);
    // FSCALn        Frequency Synthesizer Calibration
    spi_c1101_write_register(SPIC1101_ADDR_FSCAL3, 0xE9);
    spi_c1101_write_register(SPIC1101_ADDR_FSCAL2, 0x2A);
    spi_c1101_write_register(SPIC1101_ADDR_FSCAL1, 0x00);
    spi_c1101_write_register(SPIC1101_ADDR_FSCAL0, 0x1F);

    // note: for now: assume f_xosc to be 26 Mhz
    // for ~433.125 Mhz -> freq = 1091741, freq_offset = 0
    //c1101_setFrequency(1091741,0,15);
}

// freq:            desired_carrier_freq [Hz] *2^16 / f_XOSC
// freq_offset:     desired frequency offset [Hz] *2^14 / f_XOSC
// if_freq:         desired intermidiate rx frequency [Hz] *2^10 / f_XOSC
void c1101_setFrequency(uint32_t freq, uint8_t freq_offset, uint8_t if_freq)
{
    //make sure we are in idle mode
    char sb=0;
    do
    {
        sb = c1101_getStatus();
    } while (! (SPIC1101_SB_IDLE(sb)));
    //programm frequency
    usb_rawhid_send((uint8_t*)"setting frequency",255);
    spi_c1101_write_register(SPIC1101_ADDR_FREQ0, freq & 0xFF);
    spi_c1101_write_register(SPIC1101_ADDR_FREQ1, (freq >> 8) & 0xFF);
    spi_c1101_write_register(SPIC1101_ADDR_FREQ2, (freq >> 16) & 0x3F);

    //set frequency offset
    spi_c1101_write_register(SPIC1101_ADDR_FSCTRL0, freq_offset);
    //spi_c1101_write_register(SPIC1101_ADDR_FSCTRL1, if_freq & 0x1F);

    //set channel 0
    spi_c1101_write_register(SPIC1101_ADDR_CHANNR, 0);
}

char c1101_getVersion(void)
{
    return spi_c1101_read_register(SPIC1101_ADDR_VERSION);
}

char c1101_getPartNum(void)
{
    return spi_c1101_read_register(SPIC1101_ADDR_PARTNUM);
}

char c1101_putToSleep(void)
{
    return spi_c1101_strobe_command(SPIC1101_ADDR_SPWD);
}


uint16_t c1101_measureTemp(void)
{
    uint16_t temp;
    char ptest_value=0x7F;
    ptest_value = spi_c1101_read_register(SPIC1101_ADDR_PTEST);
    spi_c1101_write_register(SPIC1101_ADDR_PTEST, 0xBF);
    _delay_ms(5);
    temp = adc_read(ADCMUX_INTERNALTEMP);
    spi_c1101_write_register(SPIC1101_ADDR_PTEST, ptest_value);
    return temp;
}

void c1101_handleStatusByte(char sb)
{
    //on RXFifo Overflow, Flush RX Fifo
    if (SPIC1101_SB_RXFIFO_OVERFLOW(sb))
    {
        spi_c1101_strobe_command(SPIC1101_ADDR_SFRX);
        usb_rawhid_send((uint8_t*)"RX fifo flushed",255);
    }
    //on TXFifo Overflow, Flush TX Fifo
    if (SPIC1101_SB_TXFIFO_OVERFLOW(sb))
    {
        spi_c1101_strobe_command(SPIC1101_ADDR_SFTX);
        usb_rawhid_send((uint8_t*)"TX fifo flushed",255);
    }
}

char c1101_getStatus(void)
{
    char sb=0;
    spi_cs_enable();
    spi_c1101_wait_chip_rdy();
    sb = spi_c1101_write_byte_ok_get_status(SPIC1101_ADDR_SNOP);
    spi_cs_disable();
    //debug start
    uint8_t debug_sb[6];
    usb_rawhid_send((uint8_t*)"c1101 status:",255);
    debug_sprint_int16hex(debug_sb, sb);
    usb_rawhid_send(debug_sb,255);
    //debug end
    c1101_handleStatusByte(sb);
    return sb;
}

char c1101_getMARCState(void)
{
    char sb=0;
    sb = spi_c1101_read_register(SPIC1101_ADDR_MARCSTATE);
    sb &= 0x1F;
    //debug start
    uint8_t debug_sb[6];
    usb_rawhid_send((uint8_t*)"c1101 MARCSate:",255);
    debug_sprint_int16hex(debug_sb, sb);
    usb_rawhid_send(debug_sb,255);
    //debug end
    return sb;
}

uint8_t c1101_getNumBytesInTXFifo(void)
{
    return spi_c1101_read_register(SPIC1101_ADDR_TXBYTES);
}

void c1101_transmitData(char *buffer, unsigned int len)
{
    uint8_t debug_sb[6];
    uint8_t num_written = 0;
    uint8_t mcsm1 = spi_c1101_read_register(SPIC1101_ADDR_MCSM1);
    //configure state machine to automatically go to IDLE, once packet was transmitted
    mcsm1 = (mcsm1 & 0b11111100) | 0b00;
    spi_c1101_write_register(SPIC1101_ADDR_MCSM1, 0x18);
    // flush TX Buffer
    num_written = spi_c1101_strobe_command(SPIC1101_ADDR_SFTX);
    usb_rawhid_send((uint8_t*)"Flush TX Fifo",255);
    debug_sprint_int16hex(debug_sb, num_written);
    usb_rawhid_send(debug_sb,255);


    //~ //fill buffer
    //~ num_written = spi_c1101_write_txfifo(buffer, len);
    //~ buffer += num_written;
    //~ len -= num_written;

    //~ usb_rawhid_send((uint8_t*)"TX num written",255);
    //~ debug_sprint_int16hex(debug_sb, num_written);
    //~ usb_rawhid_send(debug_sb,255);
    //~ usb_rawhid_send((uint8_t*)"TX len",255);
    //~ debug_sprint_int16hex(debug_sb, len);
    //~ usb_rawhid_send(debug_sb,255);

    //~ c1101_getStatus();
    //~ usb_rawhid_send((uint8_t*)"TX bytes",255);
    //~ debug_sprint_int16hex(debug_sb, c1101_getNumBytesInTXFifo());
    //~ usb_rawhid_send(debug_sb,255);

    //start transmitting
    //num_written = spi_c1101_strobe_command(SPIC1101_ADDR_STX);
    //~ num_written = spi_exchange_byte(SPIC1101_ADDR_STX);
    //~ usb_rawhid_send((uint8_t*)"Strobe STX",255);
    //~ debug_sprint_int16hex(debug_sb, num_written);
    //~ usb_rawhid_send(debug_sb,255);

    //keep buffer filled
    uint8_t c1101_state=0;
    do
    {
        c1101_state = c1101_getMARCState();
        if (c1101_state == 1)
        {
            //from idle state, go to RX state
            num_written = spi_c1101_strobe_command(SPIC1101_ADDR_STX);
            usb_rawhid_send((uint8_t*)"Strobe STX",255);
            debug_sprint_int16hex(debug_sb, num_written);
            usb_rawhid_send(debug_sb,255);
        }

        c1101_getStatus();
        num_written = spi_c1101_write_txfifo(buffer,  len );
        buffer += num_written;
        len -= num_written;

        usb_rawhid_send((uint8_t*)"TX2 num written",255);
        debug_sprint_int16hex(debug_sb, num_written);
        usb_rawhid_send(debug_sb,255);
        usb_rawhid_send((uint8_t*)"TX2 len",255);
        debug_sprint_int16hex(debug_sb, len);
        usb_rawhid_send(debug_sb,255);
        usb_rawhid_send((uint8_t*)"TX2 bytes",255);
        debug_sprint_int16hex(debug_sb, c1101_getNumBytesInTXFifo());
        usb_rawhid_send(debug_sb,255);
    } while (len > 0);
}

//max returned: 64 bytes
int c1101_readRXFifo(char *buffer)
{
    //check RXBYTES.NUM_RXBYTES
    // never read more bytes than avaiblabe or we will read garbage

    //note: if RX transmission fills fifo buffer at exact same time as last RX Fifo Bit is read via SPI, Fifo Pointer will not be properly updated
    //            and last read byte will be duplicated.
    // thus: don't last avialable FIFO Bytes unless we can be sure that it will be the last byte of a packet and we can be sure that a following duplicated byte is actually an Fifo duplication and not an actually recieved byte !

    return 0;
}