summaryrefslogtreecommitdiff
path: root/contrib/FreeRTOS_Library/include/task.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/FreeRTOS_Library/include/task.h')
-rw-r--r--contrib/FreeRTOS_Library/include/task.h1279
1 files changed, 0 insertions, 1279 deletions
diff --git a/contrib/FreeRTOS_Library/include/task.h b/contrib/FreeRTOS_Library/include/task.h
deleted file mode 100644
index 84673aa..0000000
--- a/contrib/FreeRTOS_Library/include/task.h
+++ /dev/null
@@ -1,1279 +0,0 @@
-/*
- FreeRTOS V6.1.0 - Copyright (C) 2010 Real Time Engineers Ltd.
-
- ***************************************************************************
- * *
- * If you are: *
- * *
- * + New to FreeRTOS, *
- * + Wanting to learn FreeRTOS or multitasking in general quickly *
- * + Looking for basic training, *
- * + Wanting to improve your FreeRTOS skills and productivity *
- * *
- * then take a look at the FreeRTOS books - available as PDF or paperback *
- * *
- * "Using the FreeRTOS Real Time Kernel - a Practical Guide" *
- * http://www.FreeRTOS.org/Documentation *
- * *
- * A pdf reference manual is also available. Both are usually delivered *
- * to your inbox within 20 minutes to two hours when purchased between 8am *
- * and 8pm GMT (although please allow up to 24 hours in case of *
- * exceptional circumstances). Thank you for your support! *
- * *
- ***************************************************************************
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
- ***NOTE*** The exception to the GPL is included to allow you to distribute
- a combined work that includes FreeRTOS without being obliged to provide the
- source code for proprietary components outside of the FreeRTOS kernel.
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details. You should have received a copy of the GNU General Public
- License and the FreeRTOS license exception along with FreeRTOS; if not it
- can be viewed here: http://www.freertos.org/a00114.html and also obtained
- by writing to Richard Barry, contact details for whom are available on the
- FreeRTOS WEB site.
-
- 1 tab == 4 spaces!
-
- http://www.FreeRTOS.org - Documentation, latest information, license and
- contact details.
-
- http://www.SafeRTOS.com - A version that is certified for use in safety
- critical systems.
-
- http://www.OpenRTOS.com - Commercial support, development, porting,
- licensing and training services.
-*/
-
-
-#ifndef INC_FREERTOS_H
- #error "#include FreeRTOS.h" must appear in source files before "#include task.h"
-#endif
-
-
-
-#ifndef TASK_H
-#define TASK_H
-
-#include "portable.h"
-#include "list.h"
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*-----------------------------------------------------------
- * MACROS AND DEFINITIONS
- *----------------------------------------------------------*/
-
-#define tskKERNEL_VERSION_NUMBER "V6.1.0"
-
-/**
- * task. h
- *
- * Type by which tasks are referenced. For example, a call to xTaskCreate
- * returns (via a pointer parameter) an xTaskHandle variable that can then
- * be used as a parameter to vTaskDelete to delete the task.
- *
- * \page xTaskHandle xTaskHandle
- * \ingroup Tasks
- */
-typedef void * xTaskHandle;
-
-/*
- * Used internally only.
- */
-typedef struct xTIME_OUT
-{
- portBASE_TYPE xOverflowCount;
- portTickType xTimeOnEntering;
-} xTimeOutType;
-
-/*
- * Defines the memory ranges allocated to the task when an MPU is used.
- */
-typedef struct xMEMORY_REGION
-{
- void *pvBaseAddress;
- unsigned long ulLengthInBytes;
- unsigned long ulParameters;
-} xMemoryRegion;
-
-/*
- * Parameters required to create an MPU protected task.
- */
-typedef struct xTASK_PARAMTERS
-{
- pdTASK_CODE pvTaskCode;
- const signed char * const pcName;
- unsigned short usStackDepth;
- void *pvParameters;
- unsigned portBASE_TYPE uxPriority;
- portSTACK_TYPE *puxStackBuffer;
- xMemoryRegion xRegions[ portNUM_CONFIGURABLE_REGIONS ];
-} xTaskParameters;
-
-/*
- * Defines the priority used by the idle task. This must not be modified.
- *
- * \ingroup TaskUtils
- */
-#define tskIDLE_PRIORITY ( ( unsigned portBASE_TYPE ) 0 )
-
-/**
- * task. h
- *
- * Macro for forcing a context switch.
- *
- * \page taskYIELD taskYIELD
- * \ingroup SchedulerControl
- */
-#define taskYIELD() portYIELD()
-
-/**
- * task. h
- *
- * Macro to mark the start of a critical code region. Preemptive context
- * switches cannot occur when in a critical region.
- *
- * NOTE: This may alter the stack (depending on the portable implementation)
- * so must be used with care!
- *
- * \page taskENTER_CRITICAL taskENTER_CRITICAL
- * \ingroup SchedulerControl
- */
-#define taskENTER_CRITICAL() portENTER_CRITICAL()
-
-/**
- * task. h
- *
- * Macro to mark the end of a critical code region. Preemptive context
- * switches cannot occur when in a critical region.
- *
- * NOTE: This may alter the stack (depending on the portable implementation)
- * so must be used with care!
- *
- * \page taskEXIT_CRITICAL taskEXIT_CRITICAL
- * \ingroup SchedulerControl
- */
-#define taskEXIT_CRITICAL() portEXIT_CRITICAL()
-
-/**
- * task. h
- *
- * Macro to disable all maskable interrupts.
- *
- * \page taskDISABLE_INTERRUPTS taskDISABLE_INTERRUPTS
- * \ingroup SchedulerControl
- */
-#define taskDISABLE_INTERRUPTS() portDISABLE_INTERRUPTS()
-
-/**
- * task. h
- *
- * Macro to enable microcontroller interrupts.
- *
- * \page taskENABLE_INTERRUPTS taskENABLE_INTERRUPTS
- * \ingroup SchedulerControl
- */
-#define taskENABLE_INTERRUPTS() portENABLE_INTERRUPTS()
-
-/* Definitions returned by xTaskGetSchedulerState(). */
-#define taskSCHEDULER_NOT_STARTED 0
-#define taskSCHEDULER_RUNNING 1
-#define taskSCHEDULER_SUSPENDED 2
-
-/*-----------------------------------------------------------
- * TASK CREATION API
- *----------------------------------------------------------*/
-
-/**
- * task. h
- *<pre>
- portBASE_TYPE xTaskCreate(
- pdTASK_CODE pvTaskCode,
- const char * const pcName,
- unsigned short usStackDepth,
- void *pvParameters,
- unsigned portBASE_TYPE uxPriority,
- xTaskHandle *pvCreatedTask
- );</pre>
- *
- * Create a new task and add it to the list of tasks that are ready to run.
- *
- * xTaskCreate() can only be used to create a task that has unrestricted
- * access to the entire microcontroller memory map. Systems that include MPU
- * support can alternatively create an MPU constrained task using
- * xTaskCreateRestricted().
- *
- * @param pvTaskCode Pointer to the task entry function. Tasks
- * must be implemented to never return (i.e. continuous loop).
- *
- * @param pcName A descriptive name for the task. This is mainly used to
- * facilitate debugging. Max length defined by tskMAX_TASK_NAME_LEN - default
- * is 16.
- *
- * @param usStackDepth The size of the task stack specified as the number of
- * variables the stack can hold - not the number of bytes. For example, if
- * the stack is 16 bits wide and usStackDepth is defined as 100, 200 bytes
- * will be allocated for stack storage.
- *
- * @param pvParameters Pointer that will be used as the parameter for the task
- * being created.
- *
- * @param uxPriority The priority at which the task should run. Systems that
- * include MPU support can optionally create tasks in a privileged (system)
- * mode by setting bit portPRIVILEGE_BIT of the priority parameter. For
- * example, to create a privileged task at priority 2 the uxPriority parameter
- * should be set to ( 2 | portPRIVILEGE_BIT ).
- *
- * @param pvCreatedTask Used to pass back a handle by which the created task
- * can be referenced.
- *
- * @return pdPASS if the task was successfully created and added to a ready
- * list, otherwise an error code defined in the file errors. h
- *
- * Example usage:
- <pre>
- // Task to be created.
- void vTaskCode( void * pvParameters )
- {
- for( ;; )
- {
- // Task code goes here.
- }
- }
-
- // Function that creates a task.
- void vOtherFunction( void )
- {
- static unsigned char ucParameterToPass;
- xTaskHandle xHandle;
-
- // Create the task, storing the handle. Note that the passed parameter ucParameterToPass
- // must exist for the lifetime of the task, so in this case is declared static. If it was just an
- // an automatic stack variable it might no longer exist, or at least have been corrupted, by the time
- // the new task attempts to access it.
- xTaskCreate( vTaskCode, "NAME", STACK_SIZE, &ucParameterToPass, tskIDLE_PRIORITY, &xHandle );
-
- // Use the handle to delete the task.
- vTaskDelete( xHandle );
- }
- </pre>
- * \defgroup xTaskCreate xTaskCreate
- * \ingroup Tasks
- */
-#define xTaskCreate( pvTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask ) xTaskGenericCreate( ( pvTaskCode ), ( pcName ), ( usStackDepth ), ( pvParameters ), ( uxPriority ), ( pxCreatedTask ), ( NULL ), ( NULL ) )
-
-/**
- * task. h
- *<pre>
- portBASE_TYPE xTaskCreateRestricted( xTaskParameters *pxTaskDefinition, xTaskHandle *pxCreatedTask );</pre>
- *
- * xTaskCreateRestricted() should only be used in systems that include an MPU
- * implementation.
- *
- * Create a new task and add it to the list of tasks that are ready to run.
- * The function parameters define the memory regions and associated access
- * permissions allocated to the task.
- *
- * @param pxTaskDefinition Pointer to a structure that contains a member
- * for each of the normal xTaskCreate() parameters (see the xTaskCreate() API
- * documentation) plus an optional stack buffer and the memory region
- * definitions.
- *
- * @param pxCreatedTask Used to pass back a handle by which the created task
- * can be referenced.
- *
- * @return pdPASS if the task was successfully created and added to a ready
- * list, otherwise an error code defined in the file errors. h
- *
- * Example usage:
- <pre>
-// Create an xTaskParameters structure that defines the task to be created.
-static const xTaskParameters xCheckTaskParameters =
-{
- vATask, // pvTaskCode - the function that implements the task.
- "ATask", // pcName - just a text name for the task to assist debugging.
- 100, // usStackDepth - the stack size DEFINED IN WORDS.
- NULL, // pvParameters - passed into the task function as the function parameters.
- ( 1UL | portPRIVILEGE_BIT ),// uxPriority - task priority, set the portPRIVILEGE_BIT if the task should run in a privileged state.
- cStackBuffer,// puxStackBuffer - the buffer to be used as the task stack.
-
- // xRegions - Allocate up to three separate memory regions for access by
- // the task, with appropriate access permissions. Different processors have
- // different memory alignment requirements - refer to the FreeRTOS documentation
- // for full information.
- {
- // Base address Length Parameters
- { cReadWriteArray, 32, portMPU_REGION_READ_WRITE },
- { cReadOnlyArray, 32, portMPU_REGION_READ_ONLY },
- { cPrivilegedOnlyAccessArray, 128, portMPU_REGION_PRIVILEGED_READ_WRITE }
- }
-};
-
-int main( void )
-{
-xTaskHandle xHandle;
-
- // Create a task from the const structure defined above. The task handle
- // is requested (the second parameter is not NULL) but in this case just for
- // demonstration purposes as its not actually used.
- xTaskCreateRestricted( &xRegTest1Parameters, &xHandle );
-
- // Start the scheduler.
- vTaskStartScheduler();
-
- // Will only get here if there was insufficient memory to create the idle
- // task.
- for( ;; );
-}
- </pre>
- * \defgroup xTaskCreateRestricted xTaskCreateRestricted
- * \ingroup Tasks
- */
-#define xTaskCreateRestricted( x, pxCreatedTask ) xTaskGenericCreate( ((x)->pvTaskCode), ((x)->pcName), ((x)->usStackDepth), ((x)->pvParameters), ((x)->uxPriority), (pxCreatedTask), ((x)->puxStackBuffer), ((x)->xRegions) )
-
-/**
- * task. h
- *<pre>
- void vTaskAllocateMPURegions( xTaskHandle xTask, const xMemoryRegion * const pxRegions );</pre>
- *
- * Memory regions are assigned to a restricted task when the task is created by
- * a call to xTaskCreateRestricted(). These regions can be redefined using
- * vTaskAllocateMPURegions().
- *
- * @param xTask The handle of the task being updated.
- *
- * @param xRegions A pointer to an xMemoryRegion structure that contains the
- * new memory region definitions.
- *
- * Example usage:
- <pre>
-// Define an array of xMemoryRegion structures that configures an MPU region
-// allowing read/write access for 1024 bytes starting at the beginning of the
-// ucOneKByte array. The other two of the maximum 3 definable regions are
-// unused so set to zero.
-static const xMemoryRegion xAltRegions[ portNUM_CONFIGURABLE_REGIONS ] =
-{
- // Base address Length Parameters
- { ucOneKByte, 1024, portMPU_REGION_READ_WRITE },
- { 0, 0, 0 },
- { 0, 0, 0 }
-};
-
-void vATask( void *pvParameters )
-{
- // This task was created such that it has access to certain regions of
- // memory as defined by the MPU configuration. At some point it is
- // desired that these MPU regions are replaced with that defined in the
- // xAltRegions const struct above. Use a call to vTaskAllocateMPURegions()
- // for this purpose. NULL is used as the task handle to indicate that this
- // function should modify the MPU regions of the calling task.
- vTaskAllocateMPURegions( NULL, xAltRegions );
-
- // Now the task can continue its function, but from this point on can only
- // access its stack and the ucOneKByte array (unless any other statically
- // defined or shared regions have been declared elsewhere).
-}
- </pre>
- * \defgroup xTaskCreateRestricted xTaskCreateRestricted
- * \ingroup Tasks
- */
-void vTaskAllocateMPURegions( xTaskHandle xTask, const xMemoryRegion * const pxRegions ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <pre>void vTaskDelete( xTaskHandle pxTask );</pre>
- *
- * INCLUDE_vTaskDelete must be defined as 1 for this function to be available.
- * See the configuration section for more information.
- *
- * Remove a task from the RTOS real time kernels management. The task being
- * deleted will be removed from all ready, blocked, suspended and event lists.
- *
- * NOTE: The idle task is responsible for freeing the kernel allocated
- * memory from tasks that have been deleted. It is therefore important that
- * the idle task is not starved of microcontroller processing time if your
- * application makes any calls to vTaskDelete (). Memory allocated by the
- * task code is not automatically freed, and should be freed before the task
- * is deleted.
- *
- * See the demo application file death.c for sample code that utilises
- * vTaskDelete ().
- *
- * @param pxTask The handle of the task to be deleted. Passing NULL will
- * cause the calling task to be deleted.
- *
- * Example usage:
- <pre>
- void vOtherFunction( void )
- {
- xTaskHandle xHandle;
-
- // Create the task, storing the handle.
- xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
-
- // Use the handle to delete the task.
- vTaskDelete( xHandle );
- }
- </pre>
- * \defgroup vTaskDelete vTaskDelete
- * \ingroup Tasks
- */
-void vTaskDelete( xTaskHandle pxTask ) PRIVILEGED_FUNCTION;
-
-
-/*-----------------------------------------------------------
- * TASK CONTROL API
- *----------------------------------------------------------*/
-
-/**
- * task. h
- * <pre>void vTaskDelay( portTickType xTicksToDelay );</pre>
- *
- * Delay a task for a given number of ticks. The actual time that the
- * task remains blocked depends on the tick rate. The constant
- * portTICK_RATE_MS can be used to calculate real time from the tick
- * rate - with the resolution of one tick period.
- *
- * INCLUDE_vTaskDelay must be defined as 1 for this function to be available.
- * See the configuration section for more information.
- *
- *
- * vTaskDelay() specifies a time at which the task wishes to unblock relative to
- * the time at which vTaskDelay() is called. For example, specifying a block
- * period of 100 ticks will cause the task to unblock 100 ticks after
- * vTaskDelay() is called. vTaskDelay() does not therefore provide a good method
- * of controlling the frequency of a cyclical task as the path taken through the
- * code, as well as other task and interrupt activity, will effect the frequency
- * at which vTaskDelay() gets called and therefore the time at which the task
- * next executes. See vTaskDelayUntil() for an alternative API function designed
- * to facilitate fixed frequency execution. It does this by specifying an
- * absolute time (rather than a relative time) at which the calling task should
- * unblock.
- *
- * @param xTicksToDelay The amount of time, in tick periods, that
- * the calling task should block.
- *
- * Example usage:
-
- void vTaskFunction( void * pvParameters )
- {
- void vTaskFunction( void * pvParameters )
- {
- // Block for 500ms.
- const portTickType xDelay = 500 / portTICK_RATE_MS;
-
- for( ;; )
- {
- // Simply toggle the LED every 500ms, blocking between each toggle.
- vToggleLED();
- vTaskDelay( xDelay );
- }
- }
-
- * \defgroup vTaskDelay vTaskDelay
- * \ingroup TaskCtrl
- */
-void vTaskDelay( portTickType xTicksToDelay ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <pre>void vTaskDelayUntil( portTickType *pxPreviousWakeTime, portTickType xTimeIncrement );</pre>
- *
- * INCLUDE_vTaskDelayUntil must be defined as 1 for this function to be available.
- * See the configuration section for more information.
- *
- * Delay a task until a specified time. This function can be used by cyclical
- * tasks to ensure a constant execution frequency.
- *
- * This function differs from vTaskDelay () in one important aspect: vTaskDelay () will
- * cause a task to block for the specified number of ticks from the time vTaskDelay () is
- * called. It is therefore difficult to use vTaskDelay () by itself to generate a fixed
- * execution frequency as the time between a task starting to execute and that task
- * calling vTaskDelay () may not be fixed [the task may take a different path though the
- * code between calls, or may get interrupted or preempted a different number of times
- * each time it executes].
- *
- * Whereas vTaskDelay () specifies a wake time relative to the time at which the function
- * is called, vTaskDelayUntil () specifies the absolute (exact) time at which it wishes to
- * unblock.
- *
- * The constant portTICK_RATE_MS can be used to calculate real time from the tick
- * rate - with the resolution of one tick period.
- *
- * @param pxPreviousWakeTime Pointer to a variable that holds the time at which the
- * task was last unblocked. The variable must be initialised with the current time
- * prior to its first use (see the example below). Following this the variable is
- * automatically updated within vTaskDelayUntil ().
- *
- * @param xTimeIncrement The cycle time period. The task will be unblocked at
- * time *pxPreviousWakeTime + xTimeIncrement. Calling vTaskDelayUntil with the
- * same xTimeIncrement parameter value will cause the task to execute with
- * a fixed interface period.
- *
- * Example usage:
- <pre>
- // Perform an action every 10 ticks.
- void vTaskFunction( void * pvParameters )
- {
- portTickType xLastWakeTime;
- const portTickType xFrequency = 10;
-
- // Initialise the xLastWakeTime variable with the current time.
- xLastWakeTime = xTaskGetTickCount ();
- for( ;; )
- {
- // Wait for the next cycle.
- vTaskDelayUntil( &xLastWakeTime, xFrequency );
-
- // Perform action here.
- }
- }
- </pre>
- * \defgroup vTaskDelayUntil vTaskDelayUntil
- * \ingroup TaskCtrl
- */
-void vTaskDelayUntil( portTickType * const pxPreviousWakeTime, portTickType xTimeIncrement ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <pre>unsigned portBASE_TYPE uxTaskPriorityGet( xTaskHandle pxTask );</pre>
- *
- * INCLUDE_xTaskPriorityGet must be defined as 1 for this function to be available.
- * See the configuration section for more information.
- *
- * Obtain the priority of any task.
- *
- * @param pxTask Handle of the task to be queried. Passing a NULL
- * handle results in the priority of the calling task being returned.
- *
- * @return The priority of pxTask.
- *
- * Example usage:
- <pre>
- void vAFunction( void )
- {
- xTaskHandle xHandle;
-
- // Create a task, storing the handle.
- xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
-
- // ...
-
- // Use the handle to obtain the priority of the created task.
- // It was created with tskIDLE_PRIORITY, but may have changed
- // it itself.
- if( uxTaskPriorityGet( xHandle ) != tskIDLE_PRIORITY )
- {
- // The task has changed it's priority.
- }
-
- // ...
-
- // Is our priority higher than the created task?
- if( uxTaskPriorityGet( xHandle ) < uxTaskPriorityGet( NULL ) )
- {
- // Our priority (obtained using NULL handle) is higher.
- }
- }
- </pre>
- * \defgroup uxTaskPriorityGet uxTaskPriorityGet
- * \ingroup TaskCtrl
- */
-unsigned portBASE_TYPE uxTaskPriorityGet( xTaskHandle pxTask ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <pre>void vTaskPrioritySet( xTaskHandle pxTask, unsigned portBASE_TYPE uxNewPriority );</pre>
- *
- * INCLUDE_vTaskPrioritySet must be defined as 1 for this function to be available.
- * See the configuration section for more information.
- *
- * Set the priority of any task.
- *
- * A context switch will occur before the function returns if the priority
- * being set is higher than the currently executing task.
- *
- * @param pxTask Handle to the task for which the priority is being set.
- * Passing a NULL handle results in the priority of the calling task being set.
- *
- * @param uxNewPriority The priority to which the task will be set.
- *
- * Example usage:
- <pre>
- void vAFunction( void )
- {
- xTaskHandle xHandle;
-
- // Create a task, storing the handle.
- xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
-
- // ...
-
- // Use the handle to raise the priority of the created task.
- vTaskPrioritySet( xHandle, tskIDLE_PRIORITY + 1 );
-
- // ...
-
- // Use a NULL handle to raise our priority to the same value.
- vTaskPrioritySet( NULL, tskIDLE_PRIORITY + 1 );
- }
- </pre>
- * \defgroup vTaskPrioritySet vTaskPrioritySet
- * \ingroup TaskCtrl
- */
-void vTaskPrioritySet( xTaskHandle pxTask, unsigned portBASE_TYPE uxNewPriority ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <pre>void vTaskSuspend( xTaskHandle pxTaskToSuspend );</pre>
- *
- * INCLUDE_vTaskSuspend must be defined as 1 for this function to be available.
- * See the configuration section for more information.
- *
- * Suspend any task. When suspended a task will never get any microcontroller
- * processing time, no matter what its priority.
- *
- * Calls to vTaskSuspend are not accumulative -
- * i.e. calling vTaskSuspend () twice on the same task still only requires one
- * call to vTaskResume () to ready the suspended task.
- *
- * @param pxTaskToSuspend Handle to the task being suspended. Passing a NULL
- * handle will cause the calling task to be suspended.
- *
- * Example usage:
- <pre>
- void vAFunction( void )
- {
- xTaskHandle xHandle;
-
- // Create a task, storing the handle.
- xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
-
- // ...
-
- // Use the handle to suspend the created task.
- vTaskSuspend( xHandle );
-
- // ...
-
- // The created task will not run during this period, unless
- // another task calls vTaskResume( xHandle ).
-
- //...
-
-
- // Suspend ourselves.
- vTaskSuspend( NULL );
-
- // We cannot get here unless another task calls vTaskResume
- // with our handle as the parameter.
- }
- </pre>
- * \defgroup vTaskSuspend vTaskSuspend
- * \ingroup TaskCtrl
- */
-void vTaskSuspend( xTaskHandle pxTaskToSuspend ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <pre>void vTaskResume( xTaskHandle pxTaskToResume );</pre>
- *
- * INCLUDE_vTaskSuspend must be defined as 1 for this function to be available.
- * See the configuration section for more information.
- *
- * Resumes a suspended task.
- *
- * A task that has been suspended by one of more calls to vTaskSuspend ()
- * will be made available for running again by a single call to
- * vTaskResume ().
- *
- * @param pxTaskToResume Handle to the task being readied.
- *
- * Example usage:
- <pre>
- void vAFunction( void )
- {
- xTaskHandle xHandle;
-
- // Create a task, storing the handle.
- xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
-
- // ...
-
- // Use the handle to suspend the created task.
- vTaskSuspend( xHandle );
-
- // ...
-
- // The created task will not run during this period, unless
- // another task calls vTaskResume( xHandle ).
-
- //...
-
-
- // Resume the suspended task ourselves.
- vTaskResume( xHandle );
-
- // The created task will once again get microcontroller processing
- // time in accordance with it priority within the system.
- }
- </pre>
- * \defgroup vTaskResume vTaskResume
- * \ingroup TaskCtrl
- */
-void vTaskResume( xTaskHandle pxTaskToResume ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <pre>void xTaskResumeFromISR( xTaskHandle pxTaskToResume );</pre>
- *
- * INCLUDE_xTaskResumeFromISR must be defined as 1 for this function to be
- * available. See the configuration section for more information.
- *
- * An implementation of vTaskResume() that can be called from within an ISR.
- *
- * A task that has been suspended by one of more calls to vTaskSuspend ()
- * will be made available for running again by a single call to
- * xTaskResumeFromISR ().
- *
- * @param pxTaskToResume Handle to the task being readied.
- *
- * \defgroup vTaskResumeFromISR vTaskResumeFromISR
- * \ingroup TaskCtrl
- */
-portBASE_TYPE xTaskResumeFromISR( xTaskHandle pxTaskToResume ) PRIVILEGED_FUNCTION;
-
-/*-----------------------------------------------------------
- * SCHEDULER CONTROL
- *----------------------------------------------------------*/
-
-/**
- * task. h
- * <pre>void vTaskStartScheduler( void );</pre>
- *
- * Starts the real time kernel tick processing. After calling the kernel
- * has control over which tasks are executed and when. This function
- * does not return until an executing task calls vTaskEndScheduler ().
- *
- * At least one task should be created via a call to xTaskCreate ()
- * before calling vTaskStartScheduler (). The idle task is created
- * automatically when the first application task is created.
- *
- * See the demo application file main.c for an example of creating
- * tasks and starting the kernel.
- *
- * Example usage:
- <pre>
- void vAFunction( void )
- {
- // Create at least one task before starting the kernel.
- xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
-
- // Start the real time kernel with preemption.
- vTaskStartScheduler ();
-
- // Will not get here unless a task calls vTaskEndScheduler ()
- }
- </pre>
- *
- * \defgroup vTaskStartScheduler vTaskStartScheduler
- * \ingroup SchedulerControl
- */
-void vTaskStartScheduler( void ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <pre>void vTaskEndScheduler( void );</pre>
- *
- * Stops the real time kernel tick. All created tasks will be automatically
- * deleted and multitasking (either preemptive or cooperative) will
- * stop. Execution then resumes from the point where vTaskStartScheduler ()
- * was called, as if vTaskStartScheduler () had just returned.
- *
- * See the demo application file main. c in the demo/PC directory for an
- * example that uses vTaskEndScheduler ().
- *
- * vTaskEndScheduler () requires an exit function to be defined within the
- * portable layer (see vPortEndScheduler () in port. c for the PC port). This
- * performs hardware specific operations such as stopping the kernel tick.
- *
- * vTaskEndScheduler () will cause all of the resources allocated by the
- * kernel to be freed - but will not free resources allocated by application
- * tasks.
- *
- * Example usage:
- <pre>
- void vTaskCode( void * pvParameters )
- {
- for( ;; )
- {
- // Task code goes here.
-
- // At some point we want to end the real time kernel processing
- // so call ...
- vTaskEndScheduler ();
- }
- }
-
- void vAFunction( void )
- {
- // Create at least one task before starting the kernel.
- xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
-
- // Start the real time kernel with preemption.
- vTaskStartScheduler ();
-
- // Will only get here when the vTaskCode () task has called
- // vTaskEndScheduler (). When we get here we are back to single task
- // execution.
- }
- </pre>
- *
- * \defgroup vTaskEndScheduler vTaskEndScheduler
- * \ingroup SchedulerControl
- */
-void vTaskEndScheduler( void ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <pre>void vTaskSuspendAll( void );</pre>
- *
- * Suspends all real time kernel activity while keeping interrupts (including the
- * kernel tick) enabled.
- *
- * After calling vTaskSuspendAll () the calling task will continue to execute
- * without risk of being swapped out until a call to xTaskResumeAll () has been
- * made.
- *
- * API functions that have the potential to cause a context switch (for example,
- * vTaskDelayUntil(), xQueueSend(), etc.) must not be called while the scheduler
- * is suspended.
- *
- * Example usage:
- <pre>
- void vTask1( void * pvParameters )
- {
- for( ;; )
- {
- // Task code goes here.
-
- // ...
-
- // At some point the task wants to perform a long operation during
- // which it does not want to get swapped out. It cannot use
- // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
- // operation may cause interrupts to be missed - including the
- // ticks.
-
- // Prevent the real time kernel swapping out the task.
- vTaskSuspendAll ();
-
- // Perform the operation here. There is no need to use critical
- // sections as we have all the microcontroller processing time.
- // During this time interrupts will still operate and the kernel
- // tick count will be maintained.
-
- // ...
-
- // The operation is complete. Restart the kernel.
- xTaskResumeAll ();
- }
- }
- </pre>
- * \defgroup vTaskSuspendAll vTaskSuspendAll
- * \ingroup SchedulerControl
- */
-void vTaskSuspendAll( void ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <pre>char xTaskResumeAll( void );</pre>
- *
- * Resumes real time kernel activity following a call to vTaskSuspendAll ().
- * After a call to vTaskSuspendAll () the kernel will take control of which
- * task is executing at any time.
- *
- * @return If resuming the scheduler caused a context switch then pdTRUE is
- * returned, otherwise pdFALSE is returned.
- *
- * Example usage:
- <pre>
- void vTask1( void * pvParameters )
- {
- for( ;; )
- {
- // Task code goes here.
-
- // ...
-
- // At some point the task wants to perform a long operation during
- // which it does not want to get swapped out. It cannot use
- // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
- // operation may cause interrupts to be missed - including the
- // ticks.
-
- // Prevent the real time kernel swapping out the task.
- vTaskSuspendAll ();
-
- // Perform the operation here. There is no need to use critical
- // sections as we have all the microcontroller processing time.
- // During this time interrupts will still operate and the real
- // time kernel tick count will be maintained.
-
- // ...
-
- // The operation is complete. Restart the kernel. We want to force
- // a context switch - but there is no point if resuming the scheduler
- // caused a context switch already.
- if( !xTaskResumeAll () )
- {
- taskYIELD ();
- }
- }
- }
- </pre>
- * \defgroup xTaskResumeAll xTaskResumeAll
- * \ingroup SchedulerControl
- */
-signed portBASE_TYPE xTaskResumeAll( void ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <pre>signed portBASE_TYPE xTaskIsTaskSuspended( xTaskHandle xTask );</pre>
- *
- * Utility task that simply returns pdTRUE if the task referenced by xTask is
- * currently in the Suspended state, or pdFALSE if the task referenced by xTask
- * is in any other state.
- *
- */
-signed portBASE_TYPE xTaskIsTaskSuspended( xTaskHandle xTask ) PRIVILEGED_FUNCTION;
-
-/*-----------------------------------------------------------
- * TASK UTILITIES
- *----------------------------------------------------------*/
-
-/**
- * task. h
- * <PRE>portTickType xTaskGetTickCount( void );</PRE>
- *
- * @return The count of ticks since vTaskStartScheduler was called.
- *
- * \page xTaskGetTickCount xTaskGetTickCount
- * \ingroup TaskUtils
- */
-portTickType xTaskGetTickCount( void ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <PRE>portTickType xTaskGetTickCountFromISR( void );</PRE>
- *
- * @return The count of ticks since vTaskStartScheduler was called.
- *
- * This is a version of xTaskGetTickCount() that is safe to be called from an
- * ISR - provided that portTickType is the natural word size of the
- * microcontroller being used or interrupt nesting is either not supported or
- * not being used.
- *
- * \page xTaskGetTickCount xTaskGetTickCount
- * \ingroup TaskUtils
- */
-portTickType xTaskGetTickCountFromISR( void ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <PRE>unsigned short uxTaskGetNumberOfTasks( void );</PRE>
- *
- * @return The number of tasks that the real time kernel is currently managing.
- * This includes all ready, blocked and suspended tasks. A task that
- * has been deleted but not yet freed by the idle task will also be
- * included in the count.
- *
- * \page uxTaskGetNumberOfTasks uxTaskGetNumberOfTasks
- * \ingroup TaskUtils
- */
-unsigned portBASE_TYPE uxTaskGetNumberOfTasks( void ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <PRE>void vTaskList( char *pcWriteBuffer );</PRE>
- *
- * configUSE_TRACE_FACILITY must be defined as 1 for this function to be
- * available. See the configuration section for more information.
- *
- * NOTE: This function will disable interrupts for its duration. It is
- * not intended for normal application runtime use but as a debug aid.
- *
- * Lists all the current tasks, along with their current state and stack
- * usage high water mark.
- *
- * Tasks are reported as blocked ('B'), ready ('R'), deleted ('D') or
- * suspended ('S').
- *
- * @param pcWriteBuffer A buffer into which the above mentioned details
- * will be written, in ascii form. This buffer is assumed to be large
- * enough to contain the generated report. Approximately 40 bytes per
- * task should be sufficient.
- *
- * \page vTaskList vTaskList
- * \ingroup TaskUtils
- */
-void vTaskList( signed char *pcWriteBuffer ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <PRE>void vTaskGetRunTimeStats( char *pcWriteBuffer );</PRE>
- *
- * configGENERATE_RUN_TIME_STATS must be defined as 1 for this function
- * to be available. The application must also then provide definitions
- * for portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and
- * portGET_RUN_TIME_COUNTER_VALUE to configure a peripheral timer/counter
- * and return the timers current count value respectively. The counter
- * should be at least 10 times the frequency of the tick count.
- *
- * NOTE: This function will disable interrupts for its duration. It is
- * not intended for normal application runtime use but as a debug aid.
- *
- * Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total
- * accumulated execution time being stored for each task. The resolution
- * of the accumulated time value depends on the frequency of the timer
- * configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro.
- * Calling vTaskGetRunTimeStats() writes the total execution time of each
- * task into a buffer, both as an absolute count value and as a percentage
- * of the total system execution time.
- *
- * @param pcWriteBuffer A buffer into which the execution times will be
- * written, in ascii form. This buffer is assumed to be large enough to
- * contain the generated report. Approximately 40 bytes per task should
- * be sufficient.
- *
- * \page vTaskGetRunTimeStats vTaskGetRunTimeStats
- * \ingroup TaskUtils
- */
-void vTaskGetRunTimeStats( signed char *pcWriteBuffer ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <PRE>void vTaskStartTrace( char * pcBuffer, unsigned portBASE_TYPE uxBufferSize );</PRE>
- *
- * Starts a real time kernel activity trace. The trace logs the identity of
- * which task is running when.
- *
- * The trace file is stored in binary format. A separate DOS utility called
- * convtrce.exe is used to convert this into a tab delimited text file which
- * can be viewed and plotted in a spread sheet.
- *
- * @param pcBuffer The buffer into which the trace will be written.
- *
- * @param ulBufferSize The size of pcBuffer in bytes. The trace will continue
- * until either the buffer in full, or ulTaskEndTrace () is called.
- *
- * \page vTaskStartTrace vTaskStartTrace
- * \ingroup TaskUtils
- */
-void vTaskStartTrace( signed char * pcBuffer, unsigned long ulBufferSize ) PRIVILEGED_FUNCTION;
-
-/**
- * task. h
- * <PRE>unsigned long ulTaskEndTrace( void );</PRE>
- *
- * Stops a kernel activity trace. See vTaskStartTrace ().
- *
- * @return The number of bytes that have been written into the trace buffer.
- *
- * \page usTaskEndTrace usTaskEndTrace
- * \ingroup TaskUtils
- */
-unsigned long ulTaskEndTrace( void ) PRIVILEGED_FUNCTION;
-
-/**
- * task.h
- * <PRE>unsigned portBASE_TYPE uxTaskGetStackHighWaterMark( xTaskHandle xTask );</PRE>
- *
- * INCLUDE_uxTaskGetStackHighWaterMark must be set to 1 in FreeRTOSConfig.h for
- * this function to be available.
- *
- * Returns the high water mark of the stack associated with xTask. That is,
- * the minimum free stack space there has been (in bytes) since the task
- * started. The smaller the returned number the closer the task has come
- * to overflowing its stack.
- *
- * @param xTask Handle of the task associated with the stack to be checked.
- * Set xTask to NULL to check the stack of the calling task.
- *
- * @return The smallest amount of free stack space there has been (in bytes)
- * since the task referenced by xTask was created.
- */
-unsigned portBASE_TYPE uxTaskGetStackHighWaterMark( xTaskHandle xTask ) PRIVILEGED_FUNCTION;
-
-/**
- * task.h
- * <pre>void vTaskSetApplicationTaskTag( xTaskHandle xTask, pdTASK_HOOK_CODE pxHookFunction );</pre>
- *
- * Sets pxHookFunction to be the task hook function used by the task xTask.
- * Passing xTask as NULL has the effect of setting the calling tasks hook
- * function.
- */
-void vTaskSetApplicationTaskTag( xTaskHandle xTask, pdTASK_HOOK_CODE pxHookFunction ) PRIVILEGED_FUNCTION;
-
-/**
- * task.h
- * <pre>void xTaskGetApplicationTaskTag( xTaskHandle xTask );</pre>
- *
- * Returns the pxHookFunction value assigned to the task xTask.
- */
-pdTASK_HOOK_CODE xTaskGetApplicationTaskTag( xTaskHandle xTask ) PRIVILEGED_FUNCTION;
-
-/**
- * task.h
- * <pre>portBASE_TYPE xTaskCallApplicationTaskHook( xTaskHandle xTask, pdTASK_HOOK_CODE pxHookFunction );</pre>
- *
- * Calls the hook function associated with xTask. Passing xTask as NULL has
- * the effect of calling the Running tasks (the calling task) hook function.
- *
- * pvParameter is passed to the hook function for the task to interpret as it
- * wants.
- */
-portBASE_TYPE xTaskCallApplicationTaskHook( xTaskHandle xTask, void *pvParameter ) PRIVILEGED_FUNCTION;
-
-
-/*-----------------------------------------------------------
- * SCHEDULER INTERNALS AVAILABLE FOR PORTING PURPOSES
- *----------------------------------------------------------*/
-
-/*
- * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS ONLY
- * INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
- * AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
- *
- * Called from the real time kernel tick (either preemptive or cooperative),
- * this increments the tick count and checks if any tasks that are blocked
- * for a finite period required removing from a blocked list and placing on
- * a ready list.
- */
-void vTaskIncrementTick( void ) PRIVILEGED_FUNCTION;
-
-/*
- * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
- * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
- *
- * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
- *
- * Removes the calling task from the ready list and places it both
- * on the list of tasks waiting for a particular event, and the
- * list of delayed tasks. The task will be removed from both lists
- * and replaced on the ready list should either the event occur (and
- * there be no higher priority tasks waiting on the same event) or
- * the delay period expires.
- *
- * @param pxEventList The list containing tasks that are blocked waiting
- * for the event to occur.
- *
- * @param xTicksToWait The maximum amount of time that the task should wait
- * for the event to occur. This is specified in kernel ticks,the constant
- * portTICK_RATE_MS can be used to convert kernel ticks into a real time
- * period.
- */
-void vTaskPlaceOnEventList( const xList * const pxEventList, portTickType xTicksToWait ) PRIVILEGED_FUNCTION;
-
-/*
- * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
- * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
- *
- * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
- *
- * Removes a task from both the specified event list and the list of blocked
- * tasks, and places it on a ready queue.
- *
- * xTaskRemoveFromEventList () will be called if either an event occurs to
- * unblock a task, or the block timeout period expires.
- *
- * @return pdTRUE if the task being removed has a higher priority than the task
- * making the call, otherwise pdFALSE.
- */
-signed portBASE_TYPE xTaskRemoveFromEventList( const xList * const pxEventList ) PRIVILEGED_FUNCTION;
-
-/*
- * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
- * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
- *
- * INCLUDE_vTaskCleanUpResources and INCLUDE_vTaskSuspend must be defined as 1
- * for this function to be available.
- * See the configuration section for more information.
- *
- * Empties the ready and delayed queues of task control blocks, freeing the
- * memory allocated for the task control block and task stacks as it goes.
- */
-void vTaskCleanUpResources( void ) PRIVILEGED_FUNCTION;
-
-/*
- * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS ONLY
- * INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
- * AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
- *
- * Sets the pointer to the current TCB to the TCB of the highest priority task
- * that is ready to run.
- */
-void vTaskSwitchContext( void ) PRIVILEGED_FUNCTION;
-
-/*
- * Return the handle of the calling task.
- */
-xTaskHandle xTaskGetCurrentTaskHandle( void ) PRIVILEGED_FUNCTION;
-
-/*
- * Capture the current time status for future reference.
- */
-void vTaskSetTimeOutState( xTimeOutType * const pxTimeOut ) PRIVILEGED_FUNCTION;
-
-/*
- * Compare the time status now with that previously captured to see if the
- * timeout has expired.
- */
-portBASE_TYPE xTaskCheckForTimeOut( xTimeOutType * const pxTimeOut, portTickType * const pxTicksToWait ) PRIVILEGED_FUNCTION;
-
-/*
- * Shortcut used by the queue implementation to prevent unnecessary call to
- * taskYIELD();
- */
-void vTaskMissedYield( void ) PRIVILEGED_FUNCTION;
-
-/*
- * Returns the scheduler state as taskSCHEDULER_RUNNING,
- * taskSCHEDULER_NOT_STARTED or taskSCHEDULER_SUSPENDED.
- */
-portBASE_TYPE xTaskGetSchedulerState( void ) PRIVILEGED_FUNCTION;
-
-/*
- * Raises the priority of the mutex holder to that of the calling task should
- * the mutex holder have a priority less than the calling task.
- */
-void vTaskPriorityInherit( xTaskHandle * const pxMutexHolder ) PRIVILEGED_FUNCTION;
-
-/*
- * Set the priority of a task back to its proper priority in the case that it
- * inherited a higher priority while it was holding a semaphore.
- */
-void vTaskPriorityDisinherit( xTaskHandle * const pxMutexHolder ) PRIVILEGED_FUNCTION;
-
-/*
- * Generic version of the task creation function which is in turn called by the
- * xTaskCreate() and xTaskCreateRestricted() macros.
- */
-signed portBASE_TYPE xTaskGenericCreate( pdTASK_CODE pvTaskCode, const signed char * const pcName, unsigned short usStackDepth, void *pvParameters, unsigned portBASE_TYPE uxPriority, xTaskHandle *pxCreatedTask, portSTACK_TYPE *puxStackBuffer, const xMemoryRegion * const xRegions ) PRIVILEGED_FUNCTION;
-
-#ifdef __cplusplus
-}
-#endif
-#endif /* TASK_H */
-
-
-