summaryrefslogtreecommitdiff
path: root/tube-rotator/stepper.c
blob: 8b718ae1c5f87e8382072401b46f9e72831ab08d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*
 *  spreadspace avr utils
 *
 *
 *  Copyright (C) 2014 Christian Pointner <equinox@spreadspace.org>
 *
 *  This file is part of spreadspace avr utils.
 *
 *  spreadspace avr utils is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  any later version.
 *
 *  spreadspace avr utils is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with spreadspace avr utils. If not, see <http://www.gnu.org/licenses/>.
 */

#include <avr/sfr_defs.h>
#include <avr/interrupt.h>
#include <util/atomic.h>
#include <math.h>

#include "stepper.h"

uint8_t step_table [] =
{
  2,  // 0010
  6,  // 0110
  4,  // 0100
  5,  // 0101
  1,  // 0001
  9,  // 1001
  8,  // 1000
  10, // 1010
};

#define STEPPER_PORT PORTF
#define STEPPER_DDR DDRF
#define STEPPER_FIRST_BIT 4
#define STEPPER_ENABLE_A_BIT 0
#define STEPPER_ENABLE_B_BIT 1
#define LENGTH_STEP_TABLE (sizeof(step_table)/sizeof(uint8_t))
#define STEPPER_OUTPUT_BITMASK (~(0xF << STEPPER_FIRST_BIT ))

volatile uint16_t target_speed;
uint16_t current_speed;
stepper_state_t current_state;

void stepper_init(void)
{
  target_speed = STEPPER_SPEED_DEFAULT;
  STEPPER_PORT &= ~(0xF << STEPPER_FIRST_BIT | 1<<STEPPER_ENABLE_A_BIT | 1<<STEPPER_ENABLE_B_BIT);
  STEPPER_DDR |= (0xF << STEPPER_FIRST_BIT) | (1<<STEPPER_ENABLE_A_BIT) | (1<<STEPPER_ENABLE_B_BIT);
  stepper_stop();
}

void stepper_start(void)
{
  if(current_state == stepper_running) return;

  current_speed = STEPPER_SPEED_MIN;
  STEPPER_PORT |= (1<<STEPPER_ENABLE_A_BIT) | (1<<STEPPER_ENABLE_B_BIT);
  TCNT1 = 0;
  OCR1A = current_speed;
  TCCR1A = 0;                              // prescaler 1:64, WGM = 4 (CTC)
  TCCR1B = 1<<WGM12 | 1<<CS11 | 1<<CS10;   //
  TIMSK1 = 1<<OCIE1A;
  current_state = stepper_running;
}

void stepper_stop(void)
{
  STEPPER_PORT &= ~(0xF << STEPPER_FIRST_BIT | 1<<STEPPER_ENABLE_A_BIT | 1<<STEPPER_ENABLE_B_BIT);
  TCCR1B = 0; // no clock source
  TIMSK1 = 0; // disable timer interrupt
  current_state = stepper_stopped;
}

static inline void stepper_handle(void)
{
  static uint8_t step_idx = 0;

  uint8_t stepper_output = step_table[step_idx];
  stepper_output <<= STEPPER_FIRST_BIT;
  STEPPER_PORT = (STEPPER_PORT & STEPPER_OUTPUT_BITMASK ) | stepper_output;
  step_idx++;
  step_idx %= LENGTH_STEP_TABLE;

  if(step_idx != 0 && step_idx % 8) {
    if(current_speed > target_speed)
      OCR1A = (uint16_t)((STEPPER_SPEED_CONVERT_VALUE/(--current_speed)) - 1);
    else if(current_speed < target_speed)
      OCR1A = (uint16_t)((STEPPER_SPEED_CONVERT_VALUE/(++current_speed)) - 1);
  }
}

ISR(TIMER1_COMPA_vect)
{
  stepper_handle();
}

stepper_state_t stepper_get_state(void)
{
  return current_state;
}

const char* stepper_state_to_string(stepper_state_t state)
{
  switch(state) {
    case stepper_running: return "running";
    case stepper_stopped: return "stopped";
  }
  return "?";
}

void stepper_set_speed(uint16_t new_speed)
{
  if(new_speed >= STEPPER_SPEED_MIN && new_speed <= STEPPER_SPEED_MAX) {
    ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
      target_speed = new_speed;
    }
  }
}

void stepper_inc_speed(void)
{
  ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
    target_speed = (target_speed >= STEPPER_SPEED_MAX) ? STEPPER_SPEED_MAX : target_speed + 1;
  }
}

void stepper_dec_speed(void)
{
  ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
    target_speed = (target_speed <= STEPPER_SPEED_MIN) ? STEPPER_SPEED_MIN : target_speed - 1;
  }
}

uint16_t stepper_get_speed(void)
{
  return target_speed;
}

void stepper_set_speed_rpm(uint8_t new_rpm)
{
  stepper_set_speed( (uint16_t)lround( ( (double)(64.0 * 800.0 * (double)STEPPER_SPEED_CONVERT_VALUE) / (double)(60.0 * (double)F_CPU) ) * (double)new_rpm) );
}

uint8_t stepper_get_speed_rpm(void)
{
  return (uint8_t)lround( ( (double)(60.0 * (double)F_CPU) / (double)(64.0 * 800.0 * (double)STEPPER_SPEED_CONVERT_VALUE) ) * (double)(target_speed) );
}

void stepper_inc_speed_rpm(void)
{
  uint8_t rpm = stepper_get_speed_rpm();
  stepper_set_speed_rpm((rpm >= 255) ? 255 : rpm+1);
}

void stepper_dec_speed_rpm(void)
{
  uint8_t rpm = stepper_get_speed_rpm();
  stepper_set_speed_rpm((rpm <= 1) ? 1 : rpm-1);
}