summaryrefslogtreecommitdiff
path: root/lib/arduino-stub.cpp
blob: c130a450a47e125c89b1e5bdcb6ae2fdb1e20b43 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
/*
 *  spreadspace avr utils
 *
 *
 *  Copyright (C) 2013-2016 Christian Pointner <equinox@spreadspace.org>
 *
 *  This file is part of spreadspace avr utils.
 *
 *  spreadspace avr utils is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  any later version.
 *
 *  spreadspace avr utils is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with spreadspace avr utils. If not, see <http://www.gnu.org/licenses/>.
 */

#define ARDUINO_MAIN
#include "Arduino.h"

int atexit(void (* /*func*/ )()) { return 0; }

extern "C" {
#include "stdlib.h"

#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

/*
  wiring.c - Partial implementation of the Wiring API for the ATmega8.
  Part of Arduino - http://www.arduino.cc/

  Copyright (c) 2005-2006 David A. Mellis

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  This library is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General
  Public License along with this library; if not, write to the
  Free Software Foundation, Inc., 59 Temple Place, Suite 330,
  Boston, MA  02111-1307  USA
*/


// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
// the overflow handler is called every 256 ticks.
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))

// the whole number of milliseconds per timer0 overflow
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)

// the fractional number of milliseconds per timer0 overflow. we shift right
// by three to fit these numbers into a byte. (for the clock speeds we care
// about - 8 and 16 MHz - this doesn't lose precision.)
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
#define FRACT_MAX (1000 >> 3)

volatile unsigned long timer0_overflow_count = 0;
#  if defined(CORE_TEENSY) || defined(TEENSYDUINO)
volatile unsigned long timer0_millis_count;
#    define MS_COUNTER timer0_millis_count
#  else
volatile unsigned long timer0_millis;
#    define MS_COUNTER timer0_millis
#  endif
static unsigned char timer0_fract = 0;

#if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ISR(TIM0_OVF_vect)
#else
ISR(TIMER0_OVF_vect)
#endif
{
  // copy these to local variables so they can be stored in registers
  // (volatile variables must be read from memory on every access)
  unsigned long m = MS_COUNTER;
  unsigned char f = timer0_fract;

  m += MILLIS_INC;
  f += FRACT_INC;
  if (f >= FRACT_MAX) {
    f -= FRACT_MAX;
    m += 1;
  }

  timer0_fract = f;
  MS_COUNTER = m;
  timer0_overflow_count++;
}

unsigned long millis()
{
  unsigned long m;
  uint8_t oldSREG = SREG;

  // disable interrupts while we read MS_COUNTER or we might get an
  // inconsistent value (e.g. in the middle of a write to MS_COUNTER)
  cli();
  m = MS_COUNTER;
  SREG = oldSREG;

  return m;
}

unsigned long micros() {
  unsigned long m;
  uint8_t oldSREG = SREG, t;

  cli();
  m = timer0_overflow_count;
#if defined(TCNT0)
  t = TCNT0;
#elif defined(TCNT0L)
  t = TCNT0L;
#else
  #error TIMER 0 not defined
#endif

#ifdef TIFR0
  if ((TIFR0 & _BV(TOV0)) && (t < 255))
    m++;
#else
  if ((TIFR & _BV(TOV0)) && (t < 255))
    m++;
#endif

  SREG = oldSREG;

  return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
}

void delay(unsigned long ms)
{
  uint32_t start = micros();

  while (ms > 0) {
    yield();
    while ( ms > 0 && (micros() - start) >= 1000) {
      ms--;
      start += 1000;
    }
  }
}

/* Delay for the given number of microseconds.  Assumes a 1, 8, 12, 16, 20 or 24 MHz clock. */
void delayMicroseconds(unsigned int us)
{
  // call = 4 cycles + 2 to 4 cycles to init us(2 for constant delay, 4 for variable)

  // calling avrlib's delay_us() function with low values (e.g. 1 or
  // 2 microseconds) gives delays longer than desired.
  //delay_us(us);
#if F_CPU >= 24000000L
  // for the 24 MHz clock for the aventurous ones, trying to overclock

  // zero delay fix
  if (!us) return; //  = 3 cycles, (4 when true)

  // the following loop takes a 1/6 of a microsecond (4 cycles)
  // per iteration, so execute it six times for each microsecond of
  // delay requested.
  us *= 6; // x6 us, = 7 cycles

  // account for the time taken in the preceeding commands.
  // we just burned 22 (24) cycles above, remove 5, (5*4=20)
  // us is at least 6 so we can substract 5
  us -= 5; //=2 cycles

#elif F_CPU >= 20000000L
  // for the 20 MHz clock on rare Arduino boards

  // for a one-microsecond delay, simply return.  the overhead
  // of the function call takes 18 (20) cycles, which is 1us
  __asm__ __volatile__ (
    "nop" "\n\t"
    "nop" "\n\t"
    "nop" "\n\t"
    "nop"); //just waiting 4 cycles
  if (us <= 1) return; //  = 3 cycles, (4 when true)

  // the following loop takes a 1/5 of a microsecond (4 cycles)
  // per iteration, so execute it five times for each microsecond of
  // delay requested.
  us = (us << 2) + us; // x5 us, = 7 cycles

  // account for the time taken in the preceeding commands.
  // we just burned 26 (28) cycles above, remove 7, (7*4=28)
  // us is at least 10 so we can substract 7
  us -= 7; // 2 cycles

#elif F_CPU >= 16000000L
  // for the 16 MHz clock on most Arduino boards

  // for a one-microsecond delay, simply return.  the overhead
  // of the function call takes 14 (16) cycles, which is 1us
  if (us <= 1) return; //  = 3 cycles, (4 when true)

  // the following loop takes 1/4 of a microsecond (4 cycles)
  // per iteration, so execute it four times for each microsecond of
  // delay requested.
  us <<= 2; // x4 us, = 4 cycles

  // account for the time taken in the preceeding commands.
  // we just burned 19 (21) cycles above, remove 5, (5*4=20)
  // us is at least 8 so we can substract 5
  us -= 5; // = 2 cycles,

#elif F_CPU >= 12000000L
  // for the 12 MHz clock if somebody is working with USB

  // for a 1 microsecond delay, simply return.  the overhead
  // of the function call takes 14 (16) cycles, which is 1.5us
  if (us <= 1) return; //  = 3 cycles, (4 when true)

  // the following loop takes 1/3 of a microsecond (4 cycles)
  // per iteration, so execute it three times for each microsecond of
  // delay requested.
  us = (us << 1) + us; // x3 us, = 5 cycles

  // account for the time taken in the preceeding commands.
  // we just burned 20 (22) cycles above, remove 5, (5*4=20)
  // us is at least 6 so we can substract 5
  us -= 5; //2 cycles

#elif F_CPU >= 8000000L
  // for the 8 MHz internal clock

  // for a 1 and 2 microsecond delay, simply return.  the overhead
  // of the function call takes 14 (16) cycles, which is 2us
  if (us <= 2) return; //  = 3 cycles, (4 when true)

  // the following loop takes 1/2 of a microsecond (4 cycles)
  // per iteration, so execute it twice for each microsecond of
  // delay requested.
  us <<= 1; //x2 us, = 2 cycles

  // account for the time taken in the preceeding commands.
  // we just burned 17 (19) cycles above, remove 4, (4*4=16)
  // us is at least 6 so we can substract 4
  us -= 4; // = 2 cycles

#else
  // for the 1 MHz internal clock (default settings for common Atmega microcontrollers)

  // the overhead of the function calls is 14 (16) cycles
  if (us <= 16) return; //= 3 cycles, (4 when true)
  if (us <= 25) return; //= 3 cycles, (4 when true), (must be at least 25 if we want to substract 22)

  // compensate for the time taken by the preceeding and next commands (about 22 cycles)
  us -= 22; // = 2 cycles
  // the following loop takes 4 microseconds (4 cycles)
  // per iteration, so execute it us/4 times
  // us is at least 4, divided by 4 gives us 1 (no zero delay bug)
  us >>= 2; // us div 4, = 4 cycles

#endif

  // busy wait
  __asm__ __volatile__ (
    "1: sbiw %0,1" "\n\t" // 2 cycles
    "brne 1b" : "=w" (us) : "0" (us) // 2 cycles
  );
  // return = 4 cycles
}

void init()
{
  // on the ATmega168, timer 0 is also used for fast hardware pwm
  // (using phase-correct PWM would mean that timer 0 overflowed half as often
  // resulting in different millis() behavior on the ATmega8 and ATmega168)
#if defined(TCCR0A) && defined(WGM01)
  sbi(TCCR0A, WGM01);
  sbi(TCCR0A, WGM00);
#endif

  // set timer 0 prescale factor to 64
#if defined(__AVR_ATmega128__)
  // CPU specific: different values for the ATmega128
  sbi(TCCR0, CS02);
#elif defined(TCCR0) && defined(CS01) && defined(CS00)
  // this combination is for the standard atmega8
  sbi(TCCR0, CS01);
  sbi(TCCR0, CS00);
#elif defined(TCCR0B) && defined(CS01) && defined(CS00)
  // this combination is for the standard 168/328/1280/2560
  sbi(TCCR0B, CS01);
  sbi(TCCR0B, CS00);
#elif defined(TCCR0A) && defined(CS01) && defined(CS00)
  // this combination is for the __AVR_ATmega645__ series
  sbi(TCCR0A, CS01);
  sbi(TCCR0A, CS00);
#else
  #error Timer 0 prescale factor 64 not set correctly
#endif

  // enable timer 0 overflow interrupt
#if defined(TIMSK) && defined(TOIE0)
  sbi(TIMSK, TOIE0);
#elif defined(TIMSK0) && defined(TOIE0)
  sbi(TIMSK0, TOIE0);
#else
  #error	Timer 0 overflow interrupt not set correctly
#endif
}

/**
 * Empty yield() hook.
 *
 * This function is intended to be used by library writers to build
 * libraries or sketches that supports cooperative threads.
 *
 * Its defined as a weak symbol and it can be redefined to implement a
 * real cooperative scheduler.
 */
static void __empty() {
  // Empty
}
void yield(void) __attribute__ ((weak, alias("__empty")));

} // extern "C"

void arduino_init(void)
{
  init();
}

// ******************
// this is from Arduino's wiring_digital.cpp

void pinMode(uint8_t pin, uint8_t mode)
{
  uint8_t bit = digitalPinToBitMask(pin);
  uint8_t port = digitalPinToPort(pin);
  volatile uint8_t *reg, *out;

  if (port == NOT_A_PIN) return;

  // JWS: can I let the optimizer do this?
  reg = portModeRegister(port);
  out = portOutputRegister(port);

  if (mode == INPUT) {
    uint8_t oldSREG = SREG;
                cli();
    *reg &= ~bit;
    *out &= ~bit;
    SREG = oldSREG;
  } else if (mode == INPUT_PULLUP) {
    uint8_t oldSREG = SREG;
                cli();
    *reg &= ~bit;
    *out |= bit;
    SREG = oldSREG;
  } else {
    uint8_t oldSREG = SREG;
                cli();
    *reg |= bit;
    SREG = oldSREG;
  }
}

// Forcing this inline keeps the callers from having to push their own stuff
// on the stack. It is a good performance win and only takes 1 more byte per
// user than calling. (It will take more bytes on the 168.)
//
// But shouldn't this be moved into pinMode? Seems silly to check and do on
// each digitalread or write.
//
// Mark Sproul:
// - Removed inline. Save 170 bytes on atmega1280
// - changed to a switch statment; added 32 bytes but much easier to read and maintain.
// - Added more #ifdefs, now compiles for atmega645
//
//static inline void turnOffPWM(uint8_t timer) __attribute__ ((always_inline));
//static inline void turnOffPWM(uint8_t timer)
static void turnOffPWM(uint8_t timer)
{
  switch (timer)
  {
    #if defined(TCCR1A) && defined(COM1A1)
    case TIMER1A:   cbi(TCCR1A, COM1A1);    break;
    #endif
    #if defined(TCCR1A) && defined(COM1B1)
    case TIMER1B:   cbi(TCCR1A, COM1B1);    break;
    #endif
    #if defined(TCCR1A) && defined(COM1C1)
    case TIMER1C:   cbi(TCCR1A, COM1C1);    break;
    #endif

    #if defined(TCCR2) && defined(COM21)
    case  TIMER2:   cbi(TCCR2, COM21);      break;
    #endif

    #if defined(TCCR0A) && defined(COM0A1)
    case  TIMER0A:  cbi(TCCR0A, COM0A1);    break;
    #endif

    #if defined(TCCR0A) && defined(COM0B1)
    case  TIMER0B:  cbi(TCCR0A, COM0B1);    break;
    #endif
    #if defined(TCCR2A) && defined(COM2A1)
    case  TIMER2A:  cbi(TCCR2A, COM2A1);    break;
    #endif
    #if defined(TCCR2A) && defined(COM2B1)
    case  TIMER2B:  cbi(TCCR2A, COM2B1);    break;
    #endif

    #if defined(TCCR3A) && defined(COM3A1)
    case  TIMER3A:  cbi(TCCR3A, COM3A1);    break;
    #endif
    #if defined(TCCR3A) && defined(COM3B1)
    case  TIMER3B:  cbi(TCCR3A, COM3B1);    break;
    #endif
    #if defined(TCCR3A) && defined(COM3C1)
    case  TIMER3C:  cbi(TCCR3A, COM3C1);    break;
    #endif

    #if defined(TCCR4A) && defined(COM4A1)
    case  TIMER4A:  cbi(TCCR4A, COM4A1);    break;
    #endif
    #if defined(TCCR4A) && defined(COM4B1)
    case  TIMER4B:  cbi(TCCR4A, COM4B1);    break;
    #endif
    #if defined(TCCR4A) && defined(COM4C1)
    case  TIMER4C:  cbi(TCCR4A, COM4C1);    break;
    #endif
    #if defined(TCCR4C) && defined(COM4D1)
    case TIMER4D:	cbi(TCCR4C, COM4D1);	break;
    #endif

    #if defined(TCCR5A)
    case  TIMER5A:  cbi(TCCR5A, COM5A1);    break;
    case  TIMER5B:  cbi(TCCR5A, COM5B1);    break;
    case  TIMER5C:  cbi(TCCR5A, COM5C1);    break;
    #endif
  }
}

void digitalWrite(uint8_t pin, uint8_t val)
{
  uint8_t timer = digitalPinToTimer(pin);
  uint8_t bit = digitalPinToBitMask(pin);
  uint8_t port = digitalPinToPort(pin);
  volatile uint8_t *out;

  if (port == NOT_A_PIN) return;

  // If the pin that support PWM output, we need to turn it off
  // before doing a digital write.
  if (timer != NOT_ON_TIMER) turnOffPWM(timer);

  out = portOutputRegister(port);

  uint8_t oldSREG = SREG;
  cli();

  if (val == LOW) {
    *out &= ~bit;
  } else {
    *out |= bit;
  }

  SREG = oldSREG;
}

int digitalRead(uint8_t pin)
{
  uint8_t timer = digitalPinToTimer(pin);
  uint8_t bit = digitalPinToBitMask(pin);
  uint8_t port = digitalPinToPort(pin);

  if (port == NOT_A_PIN) return LOW;

  // If the pin that support PWM output, we need to turn it off
  // before getting a digital reading.
  if (timer != NOT_ON_TIMER) turnOffPWM(timer);

  if (*portInputRegister(port) & bit) return HIGH;
  return LOW;
}

// ******************
// this is from Arduino's wiring_analog.cpp

uint8_t analog_reference = DEFAULT;

void analogReference(uint8_t mode)
{
  // can't actually set the register here because the default setting
  // will connect AVCC and the AREF pin, which would cause a short if
  // there's something connected to AREF.
  analog_reference = mode;
}

int analogRead(uint8_t pin)
{
  uint8_t low, high;

#if defined(analogPinToChannel)
#if defined(__AVR_ATmega32U4__)
  if (pin >= 18) pin -= 18; // allow for channel or pin numbers
#endif
  pin = analogPinToChannel(pin);
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
  if (pin >= 54) pin -= 54; // allow for channel or pin numbers
#elif defined(__AVR_ATmega32U4__)
  if (pin >= 18) pin -= 18; // allow for channel or pin numbers
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__)
  if (pin >= 24) pin -= 24; // allow for channel or pin numbers
#else
  if (pin >= 14) pin -= 14; // allow for channel or pin numbers
#endif

#if defined(ADCSRB) && defined(MUX5)
  // the MUX5 bit of ADCSRB selects whether we're reading from channels
  // 0 to 7 (MUX5 low) or 8 to 15 (MUX5 high).
  ADCSRB = (ADCSRB & ~(1 << MUX5)) | (((pin >> 3) & 0x01) << MUX5);
#endif

  // set the analog reference (high two bits of ADMUX) and select the
  // channel (low 4 bits).  this also sets ADLAR (left-adjust result)
  // to 0 (the default).
#if defined(ADMUX)
  ADMUX = (analog_reference << 6) | (pin & 0x07);
#endif

  // without a delay, we seem to read from the wrong channel
  //delay(1);

#if defined(ADCSRA) && defined(ADCL)
  // start the conversion
  sbi(ADCSRA, ADSC);

  // ADSC is cleared when the conversion finishes
  while (bit_is_set(ADCSRA, ADSC));

  // we have to read ADCL first; doing so locks both ADCL
  // and ADCH until ADCH is read.  reading ADCL second would
  // cause the results of each conversion to be discarded,
  // as ADCL and ADCH would be locked when it completed.
  low  = ADCL;
  high = ADCH;
#else
  // we dont have an ADC, return 0
  low  = 0;
  high = 0;
#endif

  // combine the two bytes
  return (high << 8) | low;
}

// Right now, PWM output only works on the pins with
// hardware support.  These are defined in the appropriate
// pins_*.c file.  For the rest of the pins, we default
// to digital output.
void analogWrite(uint8_t pin, int val)
{
  // We need to make sure the PWM output is enabled for those pins
  // that support it, as we turn it off when digitally reading or
  // writing with them.  Also, make sure the pin is in output mode
  // for consistenty with Wiring, which doesn't require a pinMode
  // call for the analog output pins.
  pinMode(pin, OUTPUT);
  if (val == 0)
  {
    digitalWrite(pin, LOW);
  }
  else if (val == 255)
  {
    digitalWrite(pin, HIGH);
  }
  else
  {
    switch(digitalPinToTimer(pin))
    {
      // XXX fix needed for atmega8
      #if defined(TCCR0) && defined(COM00) && !defined(__AVR_ATmega8__)
      case TIMER0A:
        // connect pwm to pin on timer 0
        sbi(TCCR0, COM00);
        OCR0 = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR0A) && defined(COM0A1)
      case TIMER0A:
        // connect pwm to pin on timer 0, channel A
        sbi(TCCR0A, COM0A1);
        OCR0A = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR0A) && defined(COM0B1)
      case TIMER0B:
        // connect pwm to pin on timer 0, channel B
        sbi(TCCR0A, COM0B1);
        OCR0B = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR1A) && defined(COM1A1)
      case TIMER1A:
        // connect pwm to pin on timer 1, channel A
        sbi(TCCR1A, COM1A1);
        OCR1A = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR1A) && defined(COM1B1)
      case TIMER1B:
        // connect pwm to pin on timer 1, channel B
        sbi(TCCR1A, COM1B1);
        OCR1B = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR1A) && defined(COM1C1)
      case TIMER1C:
        // connect pwm to pin on timer 1, channel B
        sbi(TCCR1A, COM1C1);
        OCR1C = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR2) && defined(COM21)
      case TIMER2:
        // connect pwm to pin on timer 2
        sbi(TCCR2, COM21);
        OCR2 = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR2A) && defined(COM2A1)
      case TIMER2A:
        // connect pwm to pin on timer 2, channel A
        sbi(TCCR2A, COM2A1);
        OCR2A = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR2A) && defined(COM2B1)
      case TIMER2B:
        // connect pwm to pin on timer 2, channel B
        sbi(TCCR2A, COM2B1);
        OCR2B = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR3A) && defined(COM3A1)
      case TIMER3A:
        // connect pwm to pin on timer 3, channel A
        sbi(TCCR3A, COM3A1);
        OCR3A = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR3A) && defined(COM3B1)
      case TIMER3B:
        // connect pwm to pin on timer 3, channel B
        sbi(TCCR3A, COM3B1);
        OCR3B = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR3A) && defined(COM3C1)
      case TIMER3C:
        // connect pwm to pin on timer 3, channel C
        sbi(TCCR3A, COM3C1);
        OCR3C = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR4A)
      case TIMER4A:
        //connect pwm to pin on timer 4, channel A
        sbi(TCCR4A, COM4A1);
        #if defined(COM4A0)		// only used on 32U4
        cbi(TCCR4A, COM4A0);
        #endif
        OCR4A = val;	// set pwm duty
        break;
      #endif

      #if defined(TCCR4A) && defined(COM4B1)
      case TIMER4B:
        // connect pwm to pin on timer 4, channel B
        sbi(TCCR4A, COM4B1);
        OCR4B = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR4A) && defined(COM4C1)
      case TIMER4C:
        // connect pwm to pin on timer 4, channel C
        sbi(TCCR4A, COM4C1);
        OCR4C = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR4C) && defined(COM4D1)
      case TIMER4D:
        // connect pwm to pin on timer 4, channel D
        sbi(TCCR4C, COM4D1);
        #if defined(COM4D0)		// only used on 32U4
        cbi(TCCR4C, COM4D0);
        #endif
        OCR4D = val;	// set pwm duty
        break;
      #endif


      #if defined(TCCR5A) && defined(COM5A1)
      case TIMER5A:
        // connect pwm to pin on timer 5, channel A
        sbi(TCCR5A, COM5A1);
        OCR5A = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR5A) && defined(COM5B1)
      case TIMER5B:
        // connect pwm to pin on timer 5, channel B
        sbi(TCCR5A, COM5B1);
        OCR5B = val; // set pwm duty
        break;
      #endif

      #if defined(TCCR5A) && defined(COM5C1)
      case TIMER5C:
        // connect pwm to pin on timer 5, channel C
        sbi(TCCR5A, COM5C1);
        OCR5C = val; // set pwm duty
        break;
      #endif

      case NOT_ON_TIMER:
      default:
        if (val < 128) {
          digitalWrite(pin, LOW);
        } else {
          digitalWrite(pin, HIGH);
        }
    }
  }
}

// ******************
// this is from Arduino's WInterrupts.c

static void nothing(void) {
}

static volatile voidFuncPtr intFunc[EXTERNAL_NUM_INTERRUPTS] = {
#if EXTERNAL_NUM_INTERRUPTS > 8
    #warning There are more than 8 external interrupts. Some callbacks may not be initialized.
    nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 7
    nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 6
    nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 5
    nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 4
    nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 3
    nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 2
    nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 1
    nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 0
    nothing,
#endif
};
// volatile static voidFuncPtr twiIntFunc;

void attachInterrupt(uint8_t interruptNum, void (*userFunc)(void), int mode) {
  if(interruptNum < EXTERNAL_NUM_INTERRUPTS) {
    intFunc[interruptNum] = userFunc;

    // Configure the interrupt mode (trigger on low input, any change, rising
    // edge, or falling edge).  The mode constants were chosen to correspond
    // to the configuration bits in the hardware register, so we simply shift
    // the mode into place.

    // Enable the interrupt.

    switch (interruptNum) {
#if defined(__AVR_ATmega32U4__)
  // I hate doing this, but the register assignment differs between the 1280/2560
  // and the 32U4.  Since avrlib defines registers PCMSK1 and PCMSK2 that aren't
  // even present on the 32U4 this is the only way to distinguish between them.
    case 0:
  EICRA = (EICRA & ~((1<<ISC00) | (1<<ISC01))) | (mode << ISC00);
  EIMSK |= (1<<INT0);
  break;
    case 1:
  EICRA = (EICRA & ~((1<<ISC10) | (1<<ISC11))) | (mode << ISC10);
  EIMSK |= (1<<INT1);
  break;
    case 2:
        EICRA = (EICRA & ~((1<<ISC20) | (1<<ISC21))) | (mode << ISC20);
        EIMSK |= (1<<INT2);
        break;
    case 3:
        EICRA = (EICRA & ~((1<<ISC30) | (1<<ISC31))) | (mode << ISC30);
        EIMSK |= (1<<INT3);
        break;
    case 4:
        EICRB = (EICRB & ~((1<<ISC60) | (1<<ISC61))) | (mode << ISC60);
        EIMSK |= (1<<INT6);
        break;
#elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
    case 2:
      EICRA = (EICRA & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
      EIMSK |= (1 << INT0);
      break;
    case 3:
      EICRA = (EICRA & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
      EIMSK |= (1 << INT1);
      break;
    case 4:
      EICRA = (EICRA & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
      EIMSK |= (1 << INT2);
      break;
    case 5:
      EICRA = (EICRA & ~((1 << ISC30) | (1 << ISC31))) | (mode << ISC30);
      EIMSK |= (1 << INT3);
      break;
    case 0:
      EICRB = (EICRB & ~((1 << ISC40) | (1 << ISC41))) | (mode << ISC40);
      EIMSK |= (1 << INT4);
      break;
    case 1:
      EICRB = (EICRB & ~((1 << ISC50) | (1 << ISC51))) | (mode << ISC50);
      EIMSK |= (1 << INT5);
      break;
    case 6:
      EICRB = (EICRB & ~((1 << ISC60) | (1 << ISC61))) | (mode << ISC60);
      EIMSK |= (1 << INT6);
      break;
    case 7:
      EICRB = (EICRB & ~((1 << ISC70) | (1 << ISC71))) | (mode << ISC70);
      EIMSK |= (1 << INT7);
      break;
#else
    case 0:
    #if defined(EICRA) && defined(ISC00) && defined(EIMSK)
      EICRA = (EICRA & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
      EIMSK |= (1 << INT0);
    #elif defined(MCUCR) && defined(ISC00) && defined(GICR)
      MCUCR = (MCUCR & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
      GICR |= (1 << INT0);
    #elif defined(MCUCR) && defined(ISC00) && defined(GIMSK)
      MCUCR = (MCUCR & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
      GIMSK |= (1 << INT0);
    #else
      #error attachInterrupt not finished for this CPU (case 0)
    #endif
      break;

    case 1:
    #if defined(EICRA) && defined(ISC10) && defined(ISC11) && defined(EIMSK)
      EICRA = (EICRA & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
      EIMSK |= (1 << INT1);
    #elif defined(MCUCR) && defined(ISC10) && defined(ISC11) && defined(GICR)
      MCUCR = (MCUCR & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
      GICR |= (1 << INT1);
    #elif defined(MCUCR) && defined(ISC10) && defined(GIMSK) && defined(GIMSK)
      MCUCR = (MCUCR & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
      GIMSK |= (1 << INT1);
    #else
      #warning attachInterrupt may need some more work for this cpu (case 1)
    #endif
      break;

    case 2:
    #if defined(EICRA) && defined(ISC20) && defined(ISC21) && defined(EIMSK)
      EICRA = (EICRA & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
      EIMSK |= (1 << INT2);
    #elif defined(MCUCR) && defined(ISC20) && defined(ISC21) && defined(GICR)
      MCUCR = (MCUCR & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
      GICR |= (1 << INT2);
    #elif defined(MCUCR) && defined(ISC20) && defined(GIMSK) && defined(GIMSK)
      MCUCR = (MCUCR & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
      GIMSK |= (1 << INT2);
    #endif
      break;
#endif
    }
  }
}

void detachInterrupt(uint8_t interruptNum) {
  if(interruptNum < EXTERNAL_NUM_INTERRUPTS) {
    // Disable the interrupt.  (We can't assume that interruptNum is equal
    // to the number of the EIMSK bit to clear, as this isn't true on the
    // ATmega8.  There, INT0 is 6 and INT1 is 7.)
    switch (interruptNum) {
#if defined(__AVR_ATmega32U4__)
    case 0:
        EIMSK &= ~(1<<INT0);
        break;
    case 1:
        EIMSK &= ~(1<<INT1);
        break;
    case 2:
        EIMSK &= ~(1<<INT2);
        break;
    case 3:
        EIMSK &= ~(1<<INT3);
        break;
    case 4:
        EIMSK &= ~(1<<INT6);
        break;
#elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
    case 2:
      EIMSK &= ~(1 << INT0);
      break;
    case 3:
      EIMSK &= ~(1 << INT1);
      break;
    case 4:
      EIMSK &= ~(1 << INT2);
      break;
    case 5:
      EIMSK &= ~(1 << INT3);
      break;
    case 0:
      EIMSK &= ~(1 << INT4);
      break;
    case 1:
      EIMSK &= ~(1 << INT5);
      break;
    case 6:
      EIMSK &= ~(1 << INT6);
      break;
    case 7:
      EIMSK &= ~(1 << INT7);
      break;
#else
    case 0:
    #if defined(EIMSK) && defined(INT0)
      EIMSK &= ~(1 << INT0);
    #elif defined(GICR) && defined(ISC00)
      GICR &= ~(1 << INT0); // atmega32
    #elif defined(GIMSK) && defined(INT0)
      GIMSK &= ~(1 << INT0);
    #else
      #error detachInterrupt not finished for this cpu
    #endif
      break;

    case 1:
    #if defined(EIMSK) && defined(INT1)
      EIMSK &= ~(1 << INT1);
    #elif defined(GICR) && defined(INT1)
      GICR &= ~(1 << INT1); // atmega32
    #elif defined(GIMSK) && defined(INT1)
      GIMSK &= ~(1 << INT1);
    #else
      #warning detachInterrupt may need some more work for this cpu (case 1)
    #endif
      break;

    case 2:
    #if defined(EIMSK) && defined(INT2)
      EIMSK &= ~(1 << INT2);
    #elif defined(GICR) && defined(INT2)
      GICR &= ~(1 << INT2); // atmega32
    #elif defined(GIMSK) && defined(INT2)
      GIMSK &= ~(1 << INT2);
    #elif defined(INT2)
      #warning detachInterrupt may need some more work for this cpu (case 2)
    #endif
      break;
#endif
    }

    intFunc[interruptNum] = nothing;
  }
}


// ******************
// this is from Arduino's WMath.cpp

void randomSeed(unsigned long seed)
{
  if (seed != 0) {
    srandom(seed);
  }
}

long random(long howbig)
{
  if (howbig == 0) {
    return 0;
  }
  return random() % howbig;
}

long random(long howsmall, long howbig)
{
  if (howsmall >= howbig) {
    return howsmall;
  }
  long diff = howbig - howsmall;
  return random(diff) + howsmall;
}

long map(long x, long in_min, long in_max, long out_min, long out_max)
{
  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}

unsigned int makeWord(unsigned int w) { return w; }
unsigned int makeWord(unsigned char h, unsigned char l) { return (h << 8) | l; }

// end WMath.cpp