1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
|
/*
* aes_icm.c
*
* AES Integer Counter Mode
*
* David A. McGrew
* Cisco Systems, Inc.
*/
/*
*
* Copyright (c) 2001-2006, Cisco Systems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Cisco Systems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#define ALIGN_32 0
#include "aes_icm.h"
#include "alloc.h"
debug_module_t mod_aes_icm = {
0, /* debugging is off by default */
"aes icm" /* printable module name */
};
/*
* integer counter mode works as follows:
*
* 16 bits
* <----->
* +------+------+------+------+------+------+------+------+
* | nonce | pakcet index | ctr |---+
* +------+------+------+------+------+------+------+------+ |
* |
* +------+------+------+------+------+------+------+------+ v
* | salt |000000|->(+)
* +------+------+------+------+------+------+------+------+ |
* |
* +---------+
* | encrypt |
* +---------+
* |
* +------+------+------+------+------+------+------+------+ |
* | keystream block |<--+
* +------+------+------+------+------+------+------+------+
*
* All fields are big-endian
*
* ctr is the block counter, which increments from zero for
* each packet (16 bits wide)
*
* packet index is distinct for each packet (48 bits wide)
*
* nonce can be distinct across many uses of the same key, or
* can be a fixed value per key, or can be per-packet randomness
* (64 bits)
*
*/
err_status_t
aes_icm_alloc_ismacryp(cipher_t **c, int key_len, int forIsmacryp) {
extern cipher_type_t aes_icm;
uint8_t *pointer;
int tmp;
debug_print(mod_aes_icm,
"allocating cipher with key length %d", key_len);
/*
* Ismacryp, for example, uses 16 byte key + 8 byte
* salt so this function is called with key_len = 24.
* The check for key_len = 30 does not apply. Our usage
* of aes functions with key_len = values other than 30
* has not broken anything. Don't know what would be the
* effect of skipping this check for srtp in general.
*/
if (!forIsmacryp && key_len != 30)
return err_status_bad_param;
/* allocate memory a cipher of type aes_icm */
tmp = (sizeof(aes_icm_ctx_t) + sizeof(cipher_t));
pointer = (uint8_t*)crypto_alloc(tmp);
if (pointer == NULL)
return err_status_alloc_fail;
/* set pointers */
*c = (cipher_t *)pointer;
(*c)->type = &aes_icm;
(*c)->state = pointer + sizeof(cipher_t);
/* increment ref_count */
aes_icm.ref_count++;
/* set key size */
(*c)->key_len = key_len;
return err_status_ok;
}
err_status_t aes_icm_alloc(cipher_t **c, int key_len, int forIsmacryp) {
return aes_icm_alloc_ismacryp(c, key_len, 0);
}
err_status_t
aes_icm_dealloc(cipher_t *c) {
extern cipher_type_t aes_icm;
/* zeroize entire state*/
octet_string_set_to_zero((uint8_t *)c,
sizeof(aes_icm_ctx_t) + sizeof(cipher_t));
/* free memory */
crypto_free(c);
/* decrement ref_count */
aes_icm.ref_count--;
return err_status_ok;
}
/*
* aes_icm_context_init(...) initializes the aes_icm_context
* using the value in key[].
*
* the key is the secret key
*
* the salt is unpredictable (but not necessarily secret) data which
* randomizes the starting point in the keystream
*/
err_status_t
aes_icm_context_init(aes_icm_ctx_t *c, const uint8_t *key) {
v128_t tmp_key;
/* set counter and initial values to 'offset' value */
/* FIX!!! this assumes the salt is at key + 16, and thus that the */
/* FIX!!! cipher key length is 16! Also note this copies past the
end of the 'key' array by 2 bytes! */
v128_copy_octet_string(&c->counter, key + 16);
v128_copy_octet_string(&c->offset, key + 16);
/* force last two octets of the offset to zero (for srtp compatibility) */
c->offset.v8[14] = c->offset.v8[15] = 0;
c->counter.v8[14] = c->counter.v8[15] = 0;
/* set tmp_key (for alignment) */
v128_copy_octet_string(&tmp_key, key);
debug_print(mod_aes_icm,
"key: %s", v128_hex_string(&tmp_key));
debug_print(mod_aes_icm,
"offset: %s", v128_hex_string(&c->offset));
/* expand key */
aes_expand_encryption_key(&tmp_key, c->expanded_key);
/* indicate that the keystream_buffer is empty */
c->bytes_in_buffer = 0;
return err_status_ok;
}
/*
* aes_icm_set_octet(c, i) sets the counter of the context which it is
* passed so that the next octet of keystream that will be generated
* is the ith octet
*/
err_status_t
aes_icm_set_octet(aes_icm_ctx_t *c,
uint64_t octet_num) {
#ifdef NO_64BIT_MATH
int tail_num = low32(octet_num) & 0x0f;
/* 64-bit right-shift 4 */
uint64_t block_num = make64(high32(octet_num) >> 4,
((high32(octet_num) & 0x0f)<<(32-4)) |
(low32(octet_num) >> 4));
#else
int tail_num = octet_num % 16;
uint64_t block_num = octet_num / 16;
#endif
/* set counter value */
/* FIX - There's no way this is correct */
c->counter.v64[0] = c->offset.v64[0];
#ifdef NO_64BIT_MATH
c->counter.v64[0] = make64(high32(c->offset.v64[0]) ^ high32(block_num),
low32(c->offset.v64[0]) ^ low32(block_num));
#else
c->counter.v64[0] = c->offset.v64[0] ^ block_num;
#endif
debug_print(mod_aes_icm,
"set_octet: %s", v128_hex_string(&c->counter));
/* fill keystream buffer, if needed */
if (tail_num) {
v128_copy(&c->keystream_buffer, &c->counter);
aes_encrypt(&c->keystream_buffer, c->expanded_key);
c->bytes_in_buffer = sizeof(v128_t);
debug_print(mod_aes_icm, "counter: %s",
v128_hex_string(&c->counter));
debug_print(mod_aes_icm, "ciphertext: %s",
v128_hex_string(&c->keystream_buffer));
/* indicate number of bytes in keystream_buffer */
c->bytes_in_buffer = sizeof(v128_t) - tail_num;
} else {
/* indicate that keystream_buffer is empty */
c->bytes_in_buffer = 0;
}
return err_status_ok;
}
/*
* aes_icm_set_iv(c, iv) sets the counter value to the exor of iv with
* the offset
*/
err_status_t
aes_icm_set_iv(aes_icm_ctx_t *c, void *iv) {
v128_t *nonce = (v128_t *) iv;
debug_print(mod_aes_icm,
"setting iv: %s", v128_hex_string(nonce));
v128_xor(&c->counter, &c->offset, nonce);
debug_print(mod_aes_icm,
"set_counter: %s", v128_hex_string(&c->counter));
/* indicate that the keystream_buffer is empty */
c->bytes_in_buffer = 0;
return err_status_ok;
}
/*
* aes_icm_advance(...) refills the keystream_buffer and
* advances the block index of the sicm_context forward by one
*
* this is an internal, hopefully inlined function
*/
inline void
aes_icm_advance_ismacryp(aes_icm_ctx_t *c, uint8_t forIsmacryp) {
/* fill buffer with new keystream */
v128_copy(&c->keystream_buffer, &c->counter);
aes_encrypt(&c->keystream_buffer, c->expanded_key);
c->bytes_in_buffer = sizeof(v128_t);
debug_print(mod_aes_icm, "counter: %s",
v128_hex_string(&c->counter));
debug_print(mod_aes_icm, "ciphertext: %s",
v128_hex_string(&c->keystream_buffer));
/* clock counter forward */
if (forIsmacryp) {
uint32_t temp;
//alex's clock counter forward
temp = ntohl(c->counter.v32[3]);
c->counter.v32[3] = htonl(++temp);
} else {
if (!++(c->counter.v8[15]))
++(c->counter.v8[14]);
}
}
inline void aes_icm_advance(aes_icm_ctx_t *c) {
aes_icm_advance_ismacryp(c, 0);
}
/*e
* icm_encrypt deals with the following cases:
*
* bytes_to_encr < bytes_in_buffer
* - add keystream into data
*
* bytes_to_encr > bytes_in_buffer
* - add keystream into data until keystream_buffer is depleted
* - loop over blocks, filling keystream_buffer and then
* adding keystream into data
* - fill buffer then add in remaining (< 16) bytes of keystream
*/
err_status_t
aes_icm_encrypt_ismacryp(aes_icm_ctx_t *c,
unsigned char *buf, unsigned int *enc_len,
int forIsmacryp) {
unsigned int bytes_to_encr = *enc_len;
unsigned int i;
uint32_t *b;
/* check that there's enough segment left but not for ismacryp*/
if (!forIsmacryp && (bytes_to_encr + htons(c->counter.v16[7])) > 0xffff)
return err_status_terminus;
debug_print(mod_aes_icm, "block index: %d",
htons(c->counter.v16[7]));
if (bytes_to_encr <= (unsigned int)c->bytes_in_buffer) {
/* deal with odd case of small bytes_to_encr */
for (i = (sizeof(v128_t) - c->bytes_in_buffer);
i < (sizeof(v128_t) - c->bytes_in_buffer + bytes_to_encr); i++)
{
*buf++ ^= c->keystream_buffer.v8[i];
}
c->bytes_in_buffer -= bytes_to_encr;
/* return now to avoid the main loop */
return err_status_ok;
} else {
/* encrypt bytes until the remaining data is 16-byte aligned */
for (i=(sizeof(v128_t) - c->bytes_in_buffer); i < sizeof(v128_t); i++)
*buf++ ^= c->keystream_buffer.v8[i];
bytes_to_encr -= c->bytes_in_buffer;
c->bytes_in_buffer = 0;
}
/* now loop over entire 16-byte blocks of keystream */
for (i=0; i < (bytes_to_encr/sizeof(v128_t)); i++) {
/* fill buffer with new keystream */
aes_icm_advance_ismacryp(c, forIsmacryp);
/*
* add keystream into the data buffer (this would be a lot faster
* if we could assume 32-bit alignment!)
*/
#if ALIGN_32
b = (uint32_t *)buf;
*b++ ^= c->keystream_buffer.v32[0];
*b++ ^= c->keystream_buffer.v32[1];
*b++ ^= c->keystream_buffer.v32[2];
*b++ ^= c->keystream_buffer.v32[3];
buf = (uint8_t *)b;
#else
if ((((unsigned long) buf) & 0x03) != 0) {
*buf++ ^= c->keystream_buffer.v8[0];
*buf++ ^= c->keystream_buffer.v8[1];
*buf++ ^= c->keystream_buffer.v8[2];
*buf++ ^= c->keystream_buffer.v8[3];
*buf++ ^= c->keystream_buffer.v8[4];
*buf++ ^= c->keystream_buffer.v8[5];
*buf++ ^= c->keystream_buffer.v8[6];
*buf++ ^= c->keystream_buffer.v8[7];
*buf++ ^= c->keystream_buffer.v8[8];
*buf++ ^= c->keystream_buffer.v8[9];
*buf++ ^= c->keystream_buffer.v8[10];
*buf++ ^= c->keystream_buffer.v8[11];
*buf++ ^= c->keystream_buffer.v8[12];
*buf++ ^= c->keystream_buffer.v8[13];
*buf++ ^= c->keystream_buffer.v8[14];
*buf++ ^= c->keystream_buffer.v8[15];
} else {
b = (uint32_t *)buf;
*b++ ^= c->keystream_buffer.v32[0];
*b++ ^= c->keystream_buffer.v32[1];
*b++ ^= c->keystream_buffer.v32[2];
*b++ ^= c->keystream_buffer.v32[3];
buf = (uint8_t *)b;
}
#endif /* #if ALIGN_32 */
}
/* if there is a tail end of the data, process it */
if ((bytes_to_encr & 0xf) != 0) {
/* fill buffer with new keystream */
aes_icm_advance_ismacryp(c, forIsmacryp);
for (i=0; i < (bytes_to_encr & 0xf); i++)
*buf++ ^= c->keystream_buffer.v8[i];
/* reset the keystream buffer size to right value */
c->bytes_in_buffer = sizeof(v128_t) - i;
} else {
/* no tail, so just reset the keystream buffer size to zero */
c->bytes_in_buffer = 0;
}
return err_status_ok;
}
err_status_t
aes_icm_encrypt(aes_icm_ctx_t *c, unsigned char *buf, unsigned int *enc_len) {
return aes_icm_encrypt_ismacryp(c, buf, enc_len, 0);
}
err_status_t
aes_icm_output(aes_icm_ctx_t *c, uint8_t *buffer, int num_octets_to_output) {
unsigned int len = num_octets_to_output;
/* zeroize the buffer */
octet_string_set_to_zero(buffer, num_octets_to_output);
/* exor keystream into buffer */
return aes_icm_encrypt(c, buffer, &len);
}
char
aes_icm_description[] = "aes integer counter mode";
uint8_t aes_icm_test_case_0_key[30] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd
};
uint8_t aes_icm_test_case_0_nonce[16] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
uint8_t aes_icm_test_case_0_plaintext[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
uint8_t aes_icm_test_case_0_ciphertext[32] = {
0xe0, 0x3e, 0xad, 0x09, 0x35, 0xc9, 0x5e, 0x80,
0xe1, 0x66, 0xb1, 0x6d, 0xd9, 0x2b, 0x4e, 0xb4,
0xd2, 0x35, 0x13, 0x16, 0x2b, 0x02, 0xd0, 0xf7,
0x2a, 0x43, 0xa2, 0xfe, 0x4a, 0x5f, 0x97, 0xab
};
cipher_test_case_t aes_icm_test_case_0 = {
30, /* octets in key */
aes_icm_test_case_0_key, /* key */
aes_icm_test_case_0_nonce, /* packet index */
32, /* octets in plaintext */
aes_icm_test_case_0_plaintext, /* plaintext */
32, /* octets in ciphertext */
aes_icm_test_case_0_ciphertext, /* ciphertext */
NULL /* pointer to next testcase */
};
/*
* note: the encrypt function is identical to the decrypt function
*/
cipher_type_t aes_icm = {
(cipher_alloc_func_t) aes_icm_alloc,
(cipher_dealloc_func_t) aes_icm_dealloc,
(cipher_init_func_t) aes_icm_context_init,
(cipher_encrypt_func_t) aes_icm_encrypt,
(cipher_decrypt_func_t) aes_icm_encrypt,
(cipher_set_iv_func_t) aes_icm_set_iv,
(char *) aes_icm_description,
(int) 0, /* instance count */
(cipher_test_case_t *) &aes_icm_test_case_0,
(debug_module_t *) &mod_aes_icm
};
|