//***************************************************************************** // +--+ // | ++----+ // +-++ | // | | // +-+--+ | // | +--+--+ // +----+ Copyright (c) 2009-10 Code Red Technologies Ltd. // // Microcontroller Startup code for use with Red Suite // // Software License Agreement // // The software is owned by Code Red Technologies and/or its suppliers, and is // protected under applicable copyright laws. All rights are reserved. Any // use in violation of the foregoing restrictions may subject the user to criminal // sanctions under applicable laws, as well as to civil liability for the breach // of the terms and conditions of this license. // // THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED // OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. // USE OF THIS SOFTWARE FOR COMMERCIAL DEVELOPMENT AND/OR EDUCATION IS SUBJECT // TO A CURRENT END USER LICENSE AGREEMENT (COMMERCIAL OR EDUCATIONAL) WITH // CODE RED TECHNOLOGIES LTD. // //***************************************************************************** #if defined (__cplusplus) #ifdef __REDLIB__ #error Redlib does not support C++ #else //***************************************************************************** // // The entry point for the C++ library startup // //***************************************************************************** extern "C" { extern void __libc_init_array(void); } #endif #endif #define WEAK __attribute__ ((weak)) #define ALIAS(f) __attribute__ ((weak, alias (#f))) // Code Red - if CMSIS is being used, then SystemInit() routine // will be called by startup code rather than in application's main() #if defined (__USE_CMSIS) #include "system_LPC13xx.h" #endif //***************************************************************************** #if defined (__cplusplus) extern "C" { #endif //***************************************************************************** // // Forward declaration of the default handlers. These are aliased. // When the application defines a handler (with the same name), this will // automatically take precedence over these weak definitions // //***************************************************************************** void ResetISR(void); WEAK void NMI_Handler(void); WEAK void HardFault_Handler(void); WEAK void MemManage_Handler(void); WEAK void BusFault_Handler(void); WEAK void UsageFault_Handler(void); WEAK void SVCall_Handler(void); WEAK void DebugMon_Handler(void); WEAK void PendSV_Handler(void); WEAK void SysTick_Handler(void); WEAK void IntDefaultHandler(void); //***************************************************************************** // // Forward declaration of the specific IRQ handlers. These are aliased // to the IntDefaultHandler, which is a 'forever' loop. When the application // defines a handler (with the same name), this will automatically take // precedence over these weak definitions // //***************************************************************************** void I2C_IRQHandler(void) ALIAS(IntDefaultHandler); void TIMER16_0_IRQHandler(void) ALIAS(IntDefaultHandler); void TIMER16_1_IRQHandler(void) ALIAS(IntDefaultHandler); void TIMER32_0_IRQHandler(void) ALIAS(IntDefaultHandler); void TIMER32_1_IRQHandler(void) ALIAS(IntDefaultHandler); void SSP_IRQHandler(void) ALIAS(IntDefaultHandler); void UART_IRQHandler(void) ALIAS(IntDefaultHandler); void USB_IRQHandler(void) ALIAS(IntDefaultHandler); void USB_FIQHandler(void) ALIAS(IntDefaultHandler); void ADC_IRQHandler(void) ALIAS(IntDefaultHandler); void WDT_IRQHandler(void) ALIAS(IntDefaultHandler); void BOD_IRQHandler(void) ALIAS(IntDefaultHandler); void FMC_IRQHandler(void) ALIAS(IntDefaultHandler); void PIOINT3_IRQHandler(void) ALIAS(IntDefaultHandler); void PIOINT2_IRQHandler(void) ALIAS(IntDefaultHandler); void PIOINT1_IRQHandler(void) ALIAS(IntDefaultHandler); void PIOINT0_IRQHandler(void) ALIAS(IntDefaultHandler); void WAKEUP_IRQHandler(void) ALIAS(IntDefaultHandler); extern void xPortSysTickHandler(void); extern void xPortPendSVHandler(void); extern void vPortSVCHandler( void ); //***************************************************************************** // // The entry point for the application. // __main() is the entry point for Redlib based applications // main() is the entry point for Newlib based applications // //***************************************************************************** #if defined (__REDLIB__) extern void __main(void); #endif extern int main(void); //***************************************************************************** // // External declaration for the pointer to the stack top from the Linker Script // //***************************************************************************** extern void _vStackTop(void); //***************************************************************************** #if defined (__cplusplus) } // extern "C" #endif //***************************************************************************** // // The vector table. Note that the proper constructs must be placed on this to // ensure that it ends up at physical address 0x0000.0000. // //***************************************************************************** extern void (* const g_pfnVectors[])(void); __attribute__ ((section(".isr_vector"))) void (* const g_pfnVectors[])(void) = { // Core Level - CM3 &_vStackTop, // The initial stack pointer ResetISR, // The reset handler NMI_Handler, // The NMI handler HardFault_Handler, // The hard fault handler MemManage_Handler, // The MPU fault handler BusFault_Handler, // The bus fault handler UsageFault_Handler, // The usage fault handler 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved vPortSVCHandler, // SVCall handler DebugMon_Handler, // Debug monitor handler 0, // Reserved xPortPendSVHandler, // The PendSV handler xPortSysTickHandler, // The SysTick handler // Wakeup sources (40 ea.) for the I/O pins: // PIO0 (0:11) // PIO1 (0:11) // PIO2 (0:11) // PIO3 (0:3) WAKEUP_IRQHandler, // PIO0_0 Wakeup WAKEUP_IRQHandler, // PIO0_1 Wakeup WAKEUP_IRQHandler, // PIO0_2 Wakeup WAKEUP_IRQHandler, // PIO0_3 Wakeup WAKEUP_IRQHandler, // PIO0_4 Wakeup WAKEUP_IRQHandler, // PIO0_5 Wakeup WAKEUP_IRQHandler, // PIO0_6 Wakeup WAKEUP_IRQHandler, // PIO0_7 Wakeup WAKEUP_IRQHandler, // PIO0_8 Wakeup WAKEUP_IRQHandler, // PIO0_9 Wakeup WAKEUP_IRQHandler, // PIO0_10 Wakeup WAKEUP_IRQHandler, // PIO0_11 Wakeup WAKEUP_IRQHandler, // PIO1_0 Wakeup WAKEUP_IRQHandler, // PIO1_1 Wakeup WAKEUP_IRQHandler, // PIO1_2 Wakeup WAKEUP_IRQHandler, // PIO1_3 Wakeup WAKEUP_IRQHandler, // PIO1_4 Wakeup WAKEUP_IRQHandler, // PIO1_5 Wakeup WAKEUP_IRQHandler, // PIO1_6 Wakeup WAKEUP_IRQHandler, // PIO1_7 Wakeup WAKEUP_IRQHandler, // PIO1_8 Wakeup WAKEUP_IRQHandler, // PIO1_9 Wakeup WAKEUP_IRQHandler, // PIO1_10 Wakeup WAKEUP_IRQHandler, // PIO1_11 Wakeup WAKEUP_IRQHandler, // PIO2_0 Wakeup WAKEUP_IRQHandler, // PIO2_1 Wakeup WAKEUP_IRQHandler, // PIO2_2 Wakeup WAKEUP_IRQHandler, // PIO2_3 Wakeup WAKEUP_IRQHandler, // PIO2_4 Wakeup WAKEUP_IRQHandler, // PIO2_5 Wakeup WAKEUP_IRQHandler, // PIO2_6 Wakeup WAKEUP_IRQHandler, // PIO2_7 Wakeup WAKEUP_IRQHandler, // PIO2_8 Wakeup WAKEUP_IRQHandler, // PIO2_9 Wakeup WAKEUP_IRQHandler, // PIO2_10 Wakeup WAKEUP_IRQHandler, // PIO2_11 Wakeup WAKEUP_IRQHandler, // PIO3_0 Wakeup WAKEUP_IRQHandler, // PIO3_1 Wakeup WAKEUP_IRQHandler, // PIO3_2 Wakeup WAKEUP_IRQHandler, // PIO3_3 Wakeup I2C_IRQHandler, // I2C0 TIMER16_0_IRQHandler, // CT16B0 (16-bit Timer 0) TIMER16_1_IRQHandler, // CT16B1 (16-bit Timer 1) TIMER32_0_IRQHandler, // CT32B0 (32-bit Timer 0) TIMER32_1_IRQHandler, // CT32B1 (32-bit Timer 1) SSP_IRQHandler, // SSP0 UART_IRQHandler, // UART0 USB_IRQHandler, // USB IRQ USB_FIQHandler, // USB FIQ ADC_IRQHandler, // ADC (A/D Converter) WDT_IRQHandler, // WDT (Watchdog Timer) BOD_IRQHandler, // BOD (Brownout Detect) FMC_IRQHandler, // Flash (IP2111 Flash Memory Controller) PIOINT3_IRQHandler, // PIO INT3 PIOINT2_IRQHandler, // PIO INT2 PIOINT1_IRQHandler, // PIO INT1 PIOINT0_IRQHandler, // PIO INT0 }; //***************************************************************************** // // The following are constructs created by the linker, indicating where the // the "data" and "bss" segments reside in memory. The initializers for the // for the "data" segment resides immediately following the "text" segment. // //***************************************************************************** extern unsigned long _etext; extern unsigned long _data; extern unsigned long _edata; extern unsigned long _bss; extern unsigned long _ebss; //***************************************************************************** // // This is the code that gets called when the processor first starts execution // following a reset event. Only the absolutely necessary set is performed, // after which the application supplied entry() routine is called. Any fancy // actions (such as making decisions based on the reset cause register, and // resetting the bits in that register) are left solely in the hands of the // application. // //***************************************************************************** void ResetISR(void) { unsigned long *pulSrc, *pulDest; // // Copy the data segment initializers from flash to SRAM. // pulSrc = &_etext; for (pulDest = &_data; pulDest < &_edata;) { *pulDest++ = *pulSrc++; } // // Zero fill the bss segment. This is done with inline assembly since this // will clear the value of pulDest if it is not kept in a register. // __asm(" ldr r0, =_bss\n" " ldr r1, =_ebss\n" " mov r2, #0\n" " .thumb_func\n" "zero_loop:\n" " cmp r0, r1\n" " it lt\n" " strlt r2, [r0], #4\n" " blt zero_loop"); #ifdef __USE_CMSIS SystemInit(); #endif #if defined (__cplusplus) // // Call C++ library initialisation // __libc_init_array(); #endif #if defined (__REDLIB__) // Call the Redlib library, which in turn calls main() __main() ; #else main(); #endif // // main() shouldn't return, but if it does, we'll just enter an infinite loop // while (1) { ; } } //***************************************************************************** // // This is the code that gets called when the processor receives a NMI. This // simply enters an infinite loop, preserving the system state for examination // by a debugger. // //***************************************************************************** void NMI_Handler(void) { while (1) { } } void HardFault_Handler(void) { while (1) { } } void MemManage_Handler(void) { while (1) { } } void BusFault_Handler(void) { while (1) { } } void UsageFault_Handler(void) { while (1) { } } void SVCall_Handler(void) { while (1) { } } void DebugMon_Handler(void) { while (1) { } } void PendSV_Handler(void) { while (1) { } } void SysTick_Handler(void) { while (1) { } } //***************************************************************************** // // Processor ends up here if an unexpected interrupt occurs or a handler // is not present in the application code. // //***************************************************************************** void IntDefaultHandler(void) { // // Go into an infinite loop. // while (1) { } }