
MPU

Main Processing Unit
of

Mur SAT

Roland Sahlsten
FH JOANNEUM

Kapfenberg, Austria
roland.sahlsten.ase10@fh-joanneum.at



1 Introduction

MurSat is a sub-project of an art project in Graz,
which tries to give its visitors some insight into
the world of technique. The project tries to com-
bine art and technique in an exhibition in Graz, but
also through a very small satellite, also called nano-
satellite or tube-sat, traveling around mother earth
in a low orbit. MurSat is also the name of this nano-
satellite, which is developed and assembled by a
team of engineering students. In march 2012 the
satellite will be launched and brought to an orbit in
a distance to the earths surface of about 310 km. It
will stay there for 4-6 weeks and travel at a speed
of approximately 23.000 km/h. Then it will come
closer to earth, loose speed and finally enter the
earths atmosphere where it will burn up. During the
time in orbit, it will hold radio contact with several
base stations in Austria, Germany and Spain. It will
also take pictures which will be sent to earth when-
ever the satellite passes by on of the base stations.
The satellite is built up of several units. There is a
communication unit, a house holding unit, respon-
sible for the electric energy on board, a main pro-
cessing unit and several sensors. My tasks in this
project are the development and implementation of
the main processing unit. It is powered by an ARM
M3 micro processor running a free real time op-
erating system. The entire software for the main
processing unit is written in ANSI C and compiled
and built using the GNU ARM tool chain running
in the eclipse IDE.

2 Related Work

It is not possible to navigate the satellite since it
has no rocket propulsion built in. Therefore it is
also not possible to aim the camera to a certain ob-
ject. This circumstance makes it quite hard to take
pictures.

So the first consideration is just to take any pic-
tures and send them from the satellite down to the
base stations on earth. But this method is not very
feasible for some reasons. First we need to take a
lot of pictures to get at least some good ones. This
would need a lot of memory on the satellite, which
is not such a big deal, but the writing of data needs

electric energy which is quite limited on the satel-
lite. The second problem is, that we also would
need to transfer a big amount of data. Data transfer
is limited through transfer rate and also through the
time windows that allow communication with the
satellite.

It is quite obvious that there is a need of prese-
lection of the pictures which shall be downloaded
from the satellite. So we thought about a simple al-
gorithm which could be able to do some evaluation
if a picture wether it is ’interesting’ or not. To-
tally black and totally white pictures can be sorted
out. Other pictures could show something intrest-
ing. The satellite travels on a n orbit which is about
318 km above the earths surface. Therefore the
dihedral angle of earth in view is about TOTO:
check raumwinkel which is rather big compared
to the one which is showing the sun. This means,
that the likelyhood that a picture, which is not only
black or white, is rather big that it shows some parts
of the earth.

In order to raise the likelyhood of shooting a pic-
ture at the right moment, we were searching for a
way of how to find this right moment. Using the
magnetic field of the earth is not an appropriate ap-
proach since the magnetic force lines of the earth
run approximately parallel to the earth surface (ex-
cept of near the poles), which would not provide
enough information to calculate the satellites ori-
entation in a rather easy way. Furthermore, a tes-
lameter that provides values of a usable accuracy
would be to expensive as well as too damageable.

Finally we decided to use a 3D - light sensor. It
shall help to find out the relative orientation of the
satellite to the earth. One photodiode on each side
of a cube would provide 6 lines of different light
intensities. When the satellite is spinning through
space, the photodiodes will give periodical signals,
such way that three different periodes will be seen.
The satellite will rotate around three axis, whereby
each of these three periods corresponds to the rota-
tion around one of these axes.

In Figure 1 we can see, that these periodes have
one common periode, which is starting at t0. The
point im time tp (here just an example) can the be
taken as the point in time which is perfect for tak-
ing a picture. So the idea is to cumulate the photo-
sensors measurements and download them to earth.



Figure 1: Periodic output of 3 photodi-
odes.

After analysing and calculating a certain point in
time tp, the satellite can be asked to take pictures
at tp. If these pictures are not satisfying, tp can be
tuned until the results fit to the expected outcome.

3 System Overview

The satellite system consists of several units. All of
these parts are needed to fulfill the tasks the satel-
lit shall take. The satellite shall be able to com-
municate via radio, is equiped with a camera an
Alien-Encounter and a microphone, almost like a
bluetooth webcam. Furthermore there are 3 light-
sensors and 4 temperature sensors on board. Please
refer to figure 2 to get an overall picture.

As shown in the Figure 2, there are many parts.

Hacked
Handheld

Transceiver

DTMF Receiver

Battery Voltage

Solar cell Voltages

TTX (PIC)

CW Encoder
Beacon Transmission

Flash (SD-Card)

Configuration
Event Log
Counters
Images
Other payload data
...

IHU (PIC)

Power-Management
Low-Level Control Interface
 (Reboot / Emergency Off)

M

Other Sensors

JPEG Cam
Alien n-counter
(Button)

Piezo
(particle detector)

mur.sat Components

Information Flow
Power Control

Hacked
Handheld
Scanner

XO-Transmitter

MPU (LPC 1343)

RT Operating System
Data Communication Protocol Implementation
Memory Access
Camera Control and Communication
Periodic Data Transmission
Counting (?)
etc

Figure 2: System Component Overview.

4 Operating System

The software running on the MPU is based on a
preemtive real time operating systems and manages
the tasks the satellite has to fulfill. The Operating
system, on which the whole software is based on,
is FreeRTOS.
http://www.freertos.org

4.1 FreeRTOS

FreeRTOS is a preemtive multitasking real time
operating sytem. It provides methods for creat-
ing and sceduling tasks and implements queues and
semaphores for communication between, and syn-
chronisazion of the tasks.

4.2 MPU Tasks

The MPU gets commands from the low level con-
trol interface IHU and from the Hackled Hand-
held Transceiver. The IHU sends mainly com-
mands which are related to the power manage-

http://www.freertos.org


ment, whereby the Hackeld Handheld Transceiver
is the command communication interface between
the satellite and a base station on earth. The satel-
lite has to send its bacon signal permanently. This
way it can be located in space. When the satellite
gets in communication distance to a base station on
earth, a special signal is sent to the satellite which
is received by the IHU via the Hacked Handheld
Scanner. The IHU then tells the MPU to swith on
the Hacked Handheld Transceiver. From now on
a communication between the base station and the
satellite is possible.

The satellite can receive configuration com-
mands and data request commands from the base
station. The configuration commands are used to
set parameters like e.g. the sampling rate of the mi-
crophone (piezzo element), or to set parameters for
the camera, as well as to tell the satellite when and
how often to take pictures.

4.2.1 Messages

The communication inside the operatin system is
based on a message system. Tasks can send mes-
sages to each others.

FreeRTOS provides with an object called
xQueue. This is used to communnicate between
tasks in FreeRTOS. An xQueue is primarily a void
pointer which can be sent to a task. This pointer can
point to any address in the memory. In this imple-
mentation xQueues are used to point to structures
which represent ”Messages”.

1 t y p e d e f s t r u c t
2 {
3 vo id * pData ;
4 S e n d e r t Sender ;
5 }M e s s a g e t ;

A message consists of a pointer to the data which
shall be sent and an identifier of the sender. The
Sender type is just an enumeration of the tasks that
want to communicate with each others.

4.2.2 Kernel Process Task

The Kernel Process Task is reponsible for dispatch-
ing the jobs and assigning them to the accord-
ing tasks. Each time a communication interface
(UART, SPI, I2C) receives data, its interrupt ser-
vice routine notifies the Communication Process

about this event. The Communication Process col-
lects all arriving data and when a comand is com-
pletely received, the Kernel Process Task is noti-
fied, gets the command via a message, checks this
command and sends the respective message to the
task which is responsible for the execution of the
command.

4.2.3 IHU Process Task

It seems that the IHU Process Task is not needed,
so it will be taken out of the operating system. Ac-
tually the Internal Householding Unit IHU is pro-
viding the satellite with energy which is a rather
limited ressource. Therefore it is necessary to im-
plement some kind of protocol to manage the en-
ergy consumtion of all satellite components. This
IHU Process Tasks was ment to handle this proto-
col, but right now it looks like if this task is taken
over by the Kernel Processing Task.

4.2.4 Communication Process Task

This tasks purpose is to receive commands
and send responses over the respecting interface
(UART, SPI, I2C). When ever a byte arrives at one
of the interfaces, the respective interrupt service
routine ISR is triggert. The ISR copies the received
byte to a buffer and if the end of frame EOF charac-
ter is received, it sends a message to the communi-
cation task. The communication task then analyses
the received frame and informs the Kernel Process
Task. The Communication Task can also receive
messages from other tasks. These messages con-
tain data frames that shall be sent via one of the
interfaces. When such a message is received by the
Communication Task, it sends the messages data
over the respective interface.

4.2.5 Alien Encounter Process Task

The Alien Encounter Task is waiting for a message
which is sent by the interrupt service routine of the
according external interrupt. When ever an alien is
passing by the satellite who is willing to press the
Alien Encounter Button, and also can manage to do
so, an external interrupt is triggert.



4.2.6 Light Sensor Process Task

The Light Sensor Process Task is responsible for
handling light sensor related jobs. The light sen-
sors are placed such way that they detect light in all
three dimmensions in relation to the satellites local
coordinate system. When sampling the intensity of
light for these directions it shall be possible to cal-
culate the satellites, especially the cameras orinta-
tion related to sun and earth. This should help to
decide at which moment a picture of the earth can
be taken. The sampling rate of the light sensors can
be adjusted and is depending of the angular veloc-
ity of the satellites rotation.

4.2.7 Camera Process Task

The Camera Process Task handels all camera re-
lated jobs. It triggers the camera to take pictures
and reads the cammeras data (pictures) from the
cameras memory to a buffer. When ever the buffer
is filled, this task sends a message to the Memory
Process Task to store the data in the SD-Card.

4.2.8 Memory Process Task

The responsibility of the Memory Process Task is
to read and write data from and to the SD-Card.
This task can receive messages from any other task.
If a message sender wants to write data to the SD-
Card, the Memory Process Task reads the data from
the message and sends it to the SD-Card. If a task
wants to read data from the SD-Card, the Memory
Process Task reads the desired data from the SD-
Card and writes it to a message which is then sent
to the requesting task.

4.3 Component Architecture

The software consists of several components. Each
component has its dedicated functionality as de-
scribed before.

Figure 3 shall give an overview of the software
components and how thea are related to each oth-
ers.

4.3.1 Kernel Process Task

Put detailed description here.

kernel_Process_Task

camera_Process_Task

lightsens_Process_T
ask

alienEnc_Process_
Task

ihu_Process_Task comm_Process_T
ask

memory_Process_
Task

adc_Driver spi_Driver sd_Driveruart_Driver

camera_Driver mic_Driver

Figure 3: Software System Overview.

4.3.2 IHU Process Task

Put detailed description here.

4.3.3 Light Sensor Process Task

Put detailed description here.

4.3.4 Camera Process Task

Put detailed description here.

4.3.5 SDCard Process Task

Put detailed description here.


	1 Introduction
	2 Related Work
	3 System Overview
	4 Operating System
	4.1 FreeRTOS
	4.2 MPU Tasks
	4.2.1 Messages
	4.2.2 Kernel Process Task
	4.2.3 IHU Process Task
	4.2.4 Communication Process Task
	4.2.5 Alien Encounter Process Task
	4.2.6 Light Sensor Process Task
	4.2.7 Camera Process Task
	4.2.8 Memory Process Task

	4.3 Component Architecture
	4.3.1 Kernel Process Task
	4.3.2 IHU Process Task
	4.3.3 Light Sensor Process Task
	4.3.4 Camera Process Task
	4.3.5 SDCard Process Task



