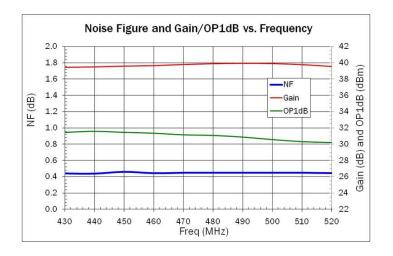


450 MHz TO 500 MHz LOW NOISE/HIGH LINEARITY PA CONNECTORIZED MODULE

Module, 2 RF Connectors, 1 DC Pin, 3 GND Pins 61.47 mm x 55.12 mm x 13.46 mm



Features

- 5VOperation, 630mA
- High Output P1dB>+31dBm
- Low Noise Figure < 0.5 dB
- High Gain > 40dB
- High Output IP3>45dBm
- 50Ω I/0
- Operating Temperature -40 °C to 85 °C

Applications

- Communication Systems
- Low Noise, High Linearity Gain Block Applications
- Test & Measurement
- Industrial/Scientific/Medical

Product Description

RFMD's RFAM9011 is a dual stage low noise, high linearity amplifier operating between 450MHz and 500MHz. This connectorized module integrates a low noise amplifier with two power amplifiers to provide 40dB of gain, +30dBm P1dB output power, 0.5dB noise figure and 47dBm output IP3. This family is assembled in ruggedized SMA housing and use RFMD's highly reliable GaAs HBT and pHEMT fabrication processes. Its single supply operation makes integration into a system or on the bench simple.

Ordering Information

Part Number Description

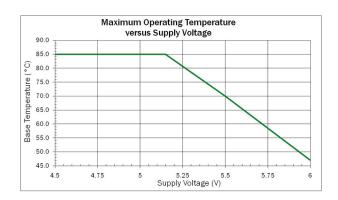
RFAM9011 Connectorized Low Noise, High Linearity Power Amplifier

Optimum Technology Matching® Applied

☑ GaAs HBT	☐ SiGe BiCMOS	▼ GaAs pHEMT	☐ GaN HEMT
☐ GaAs MESFET	☐ Si BiCMOS	☐ Si CMOS	☐ BiFET HBT
☐ InGaP HBT	☐ SiGe HBT	☐ Si BJT	☐ LDMOS

Absolute Maximum Ratings

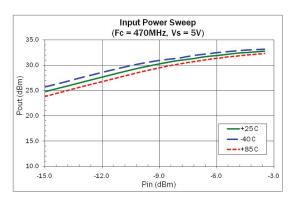
Parameter	Rating	Unit
Supply Voltage (Vcc)	6.5	V
Maximum Output Power	2	W
Maximum Current	1.2	Α
Maximum VSWR	5:1	
Storage Temperature	-55 to +125	°C
Operating Temperature	-40 to +85	°C
ESD Rating - Human Body Model (HBM)	Class 1C	

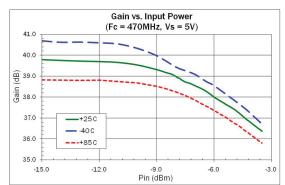

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

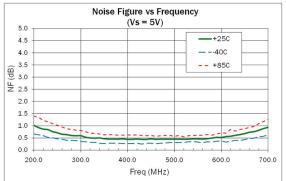
RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

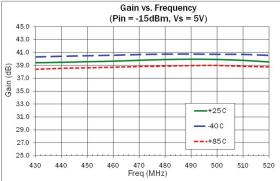
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

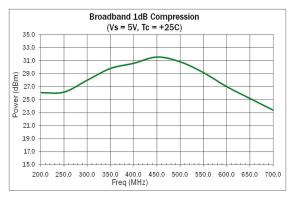
Parameter	Specification		Unit	Condition	
	Min.	Тур.	Max.	Unit	Condition
Frequency Range	450		500	MHz	
Supply Voltage (V _{S)}	4.50	5.00		V	Recommended operating range for maximum temperature range. See table below for higher voltage operation.
Supply Current		630		mA	Quiescent
Gain (S21)	39	40		dB	
P1dB	30	31.1		dBm	
P3dB		32.5		dBm	
OIP3		46.5		dBm	
Input Return Loss		-15		dB	
Output Return Loss		-25		dB	
Noise Figure		0.45		dB	
Spurious Response		-72		dBc	
Maximum Input Power		27		dBm	450 MHz to 500 MHz

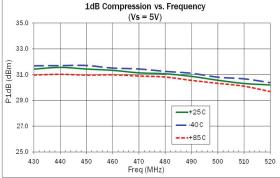

Test Conditions: $V_S = 5V$, Freq = 450 MHz to 500 MHz, T = 25 °C unless noted otherwise.



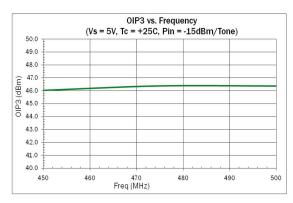

Performance vs Input Power

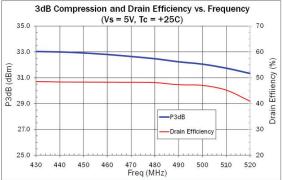


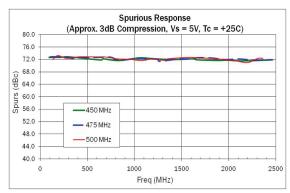


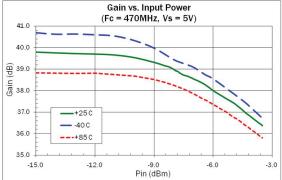


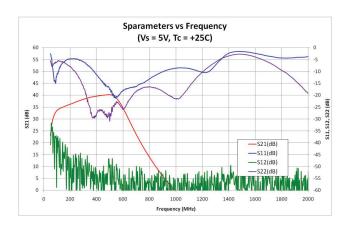
Performance vs Frequency

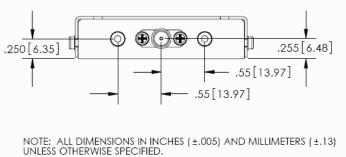


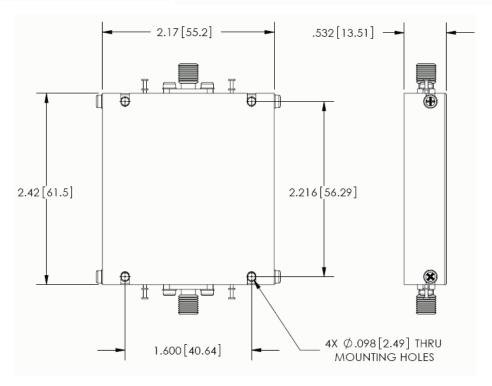












Package Drawing

Date Code - YYWW (Year and Week) Trace Code - 123ABC78