1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/*
* uAnytun
*
* uAnytun is a tiny implementation of SATP. Unlike Anytun which is a full
* featured implementation uAnytun has no support for multiple connections
* or synchronisation. It is a small single threaded implementation intended
* to act as a client on small platforms.
* The secure anycast tunneling protocol (satp) defines a protocol used
* for communication between any combination of unicast and anycast
* tunnel endpoints. It has less protocol overhead than IPSec in Tunnel
* mode and allows tunneling of every ETHER TYPE protocol (e.g.
* ethernet, ip, arp ...). satp directly includes cryptography and
* message authentication based on the methods used by SRTP. It is
* intended to deliver a generic, scaleable and secure solution for
* tunneling and relaying of packets of any protocol.
*
*
* Copyright (C) 2007-2014 Christian Pointner <equinox@anytun.org>
*
* This file is part of uAnytun.
*
* uAnytun is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* uAnytun is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with uAnytun. If not, see <http://www.gnu.org/licenses/>.
*/
#define _GNU_SOURCE
#include <stdio.h>
#include "datatypes.h"
#include "udp.h"
#include "log.h"
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
static int udp_resolv_local(udp_t* sock, const char* local_addr, const char* port, resolv_addr_type_t resolv_type, unsigned int* idx)
{
struct addrinfo hints, *res;
res = NULL;
memset (&hints, 0, sizeof (hints));
hints.ai_socktype = SOCK_DGRAM;
hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG;
switch(resolv_type) {
case IPV4_ONLY: hints.ai_family = AF_INET; break;
case IPV6_ONLY: hints.ai_family = AF_INET6; break;
default: hints.ai_family = AF_UNSPEC; break;
}
int errcode = getaddrinfo(local_addr, port, &hints, &res);
if (errcode != 0) {
log_printf(ERROR, "Error resolving local address (%s:%s): %s", (local_addr) ? local_addr : "*", port, gai_strerror(errcode));
udp_close(sock);
return -1;
}
if(!res) {
udp_close(sock);
log_printf(ERROR, "getaddrinfo returned no address for %s:%s", local_addr, port);
return -1;
}
struct addrinfo* r = res;
udp_socket_t* prev_sock = sock->socks_;
while(prev_sock && prev_sock->next_) prev_sock = prev_sock->next_;
while(r) {
udp_socket_t* new_sock = malloc(sizeof(udp_socket_t));
if(!new_sock) {
log_printf(ERROR, "memory error at udp_init");
freeaddrinfo(res);
udp_close(sock);
return -2;
}
memset(&(new_sock->local_end_.addr_), 0, sizeof(new_sock->local_end_.addr_));
new_sock->local_end_.len_ = sizeof(new_sock->local_end_.addr_);
memset(&(new_sock->remote_end_.addr_), 0, sizeof(new_sock->remote_end_.addr_));
new_sock->remote_end_.len_ = sizeof(new_sock->remote_end_.addr_);
new_sock->remote_end_set_ = 0;
new_sock->next_ = NULL;
new_sock->idx_ = (*idx)++;
if(!sock->socks_) {
sock->socks_ = new_sock;
prev_sock = new_sock;
}
else {
prev_sock->next_ = new_sock;
prev_sock = new_sock;
}
memcpy(&(new_sock->local_end_.addr_), r->ai_addr, r->ai_addrlen);
new_sock->local_end_.len_ = r->ai_addrlen;
new_sock->fd_ = socket(new_sock->local_end_.addr_.ss_family, SOCK_DGRAM, 0);
if(new_sock->fd_ < 0) {
log_printf(ERROR, "Error on opening udp socket: %s", strerror(errno));
freeaddrinfo(res);
udp_close(sock);
return -1;
}
if(r->ai_family == AF_INET6) {
int on = 1;
if(setsockopt(new_sock->fd_, IPPROTO_IPV6, IPV6_V6ONLY, &on, sizeof(on)))
log_printf(ERROR, "Error on setting IPV6_V6ONLY socket option: %s", strerror(errno));
}
errcode = bind(new_sock->fd_, (struct sockaddr*)&(new_sock->local_end_.addr_), new_sock->local_end_.len_);
if(errcode) {
log_printf(ERROR, "Error on binding udp socket: %s", strerror(errno));
freeaddrinfo(res);
udp_close(sock);
return -1;
}
char* local_string = udp_endpoint_to_string(&(new_sock->local_end_));
if(local_string) {
log_printf(NOTICE, "socket[%d] listening on: %s", new_sock->idx_, local_string);
free(local_string);
}
r = r->ai_next;
}
freeaddrinfo(res);
return 0;
}
int udp_init(udp_t* sock, const char* local_addr, const char* port, resolv_addr_type_t resolv_type)
{
if(!sock || !port)
return -1;
sock->socks_ = NULL;
sock->active_sock_ = NULL;
unsigned int idx = 0;
int ret = udp_resolv_local(sock, local_addr, port, resolv_type, &idx);
if(ret)
return ret;
return 0;
}
int udp_fill_fd_set(udp_t* sock, fd_set* set)
{
int max_fd = 0;
udp_socket_t* s = sock->socks_;
while(s) {
FD_SET(s->fd_, set);
max_fd = s->fd_ > max_fd ? s->fd_ : max_fd;
s = s->next_;
}
return max_fd;
}
int udp_has_remote(udp_t* sock)
{
if(!sock->active_sock_ || !sock->active_sock_->remote_end_set_)
return 0;
udp_socket_t* s = sock->socks_;
while(s) {
if(s->remote_end_set_)
return 1;
s = s->next_;
}
return 0;
}
int udp_resolv_remote(udp_t* sock, const char* remote_addr, const char* port, resolv_addr_type_t resolv_type)
{
struct addrinfo hints, *res;
if(!sock || !remote_addr || !port)
return -1;
res = NULL;
memset (&hints, 0, sizeof (hints));
hints.ai_socktype = SOCK_DGRAM;
switch(resolv_type) {
case IPV4_ONLY: hints.ai_family = PF_INET; break;
case IPV6_ONLY: hints.ai_family = PF_INET6; break;
default: hints.ai_family = PF_UNSPEC; break;
}
int errcode = getaddrinfo(remote_addr, port, &hints, &res);
if (errcode != 0) {
log_printf(ERROR, "Error resolving remote address (%s:%s): %s", (remote_addr) ? remote_addr : "*", port, gai_strerror(errcode));
return -1;
}
if(!res) {
log_printf(ERROR, "getaddrinfo returned no address for %s:%s", remote_addr, port);
return -1;
}
int found = 0;
struct addrinfo* r = res;
while(r) {
udp_socket_t* s = sock->socks_;
while(s) {
if(s->local_end_.addr_.ss_family == r->ai_family && !(s->remote_end_set_)) {
sock->active_sock_ = s;
break;
}
s = s->next_;
}
if(s) {
memcpy(&(s->remote_end_.addr_), r->ai_addr, r->ai_addrlen);
s->remote_end_.len_ = r->ai_addrlen;
s->remote_end_set_ = 1;
found = 1;
char* remote_string = udp_endpoint_to_string(&(s->remote_end_));
if(remote_string) {
log_printf(NOTICE, "socket[%d] set remote end to: %s", s->idx_, remote_string);
free(remote_string);
}
break;
}
r = r->ai_next;
}
freeaddrinfo(res);
if(!found)
log_printf(WARNING, "no remote address for '%s' found that fits any of the local address families", remote_addr);
return 0;
}
void udp_update_remote(udp_t* sock, int fd, udp_endpoint_t* remote)
{
if(!sock)
return;
if(!(sock->active_sock_) || sock->active_sock_->fd_ != fd) {
udp_socket_t* s = sock->socks_;
while(s) {
if(s->fd_ == fd) {
sock->active_sock_ = s;
break;
}
s = s->next_;
}
}
if(!remote)
return;
if(sock->active_sock_) {
if(remote->len_ != sock->active_sock_->remote_end_.len_ ||
memcmp(&(remote->addr_), &(sock->active_sock_->remote_end_.addr_), remote->len_)) {
memcpy(&(sock->active_sock_->remote_end_.addr_), &(remote->addr_), remote->len_);
sock->active_sock_->remote_end_.len_ = remote->len_;
sock->active_sock_->remote_end_set_ = 1;
char* addrstring = udp_endpoint_to_string(remote);
log_printf(NOTICE, "socket[%d] autodetected remote host changed %s", sock->active_sock_->idx_, addrstring);
free(addrstring);
}
}
}
void udp_close(udp_t* sock)
{
if(!sock)
return;
while(sock->socks_) {
if(sock->socks_->fd_ > 0)
close(sock->socks_->fd_);
udp_socket_t*s = sock->socks_;
sock->socks_ = sock->socks_->next_;
free(s);
}
sock->socks_ = NULL;
sock->active_sock_ = NULL;
}
char* udp_endpoint_to_string(udp_endpoint_t* e)
{
if(!e)
return strdup("<null>");
char addrstr[INET6_ADDRSTRLEN + 1], portstr[6], *ret;
char addrport_sep = ':';
switch(e->addr_.ss_family)
{
case AF_INET: addrport_sep = ':'; break;
case AF_INET6: addrport_sep = '.'; break;
case AF_UNSPEC: return NULL;
default: return strdup("<unknown address type>");
}
int errcode = getnameinfo((struct sockaddr *)&(e->addr_), e->len_, addrstr, sizeof(addrstr), portstr, sizeof(portstr), NI_NUMERICHOST | NI_NUMERICSERV);
if (errcode != 0) return NULL;
int len = asprintf(&ret, "%s%c%s", addrstr, addrport_sep ,portstr);
if(len == -1) return NULL;
return ret;
}
int udp_read(udp_t* sock, int fd, u_int8_t* buf, u_int32_t len, udp_endpoint_t* remote_end)
{
if(!sock || !buf || !remote_end)
return -1;
return recvfrom(fd, buf, len, 0, (struct sockaddr *)&(remote_end->addr_), &(remote_end->len_));
}
int udp_write(udp_t* sock, u_int8_t* buf, u_int32_t len)
{
if(!sock || !buf || !sock->active_sock_ || !sock->active_sock_->remote_end_set_)
return 0;
return sendto(sock->active_sock_->fd_, buf, len, 0, (struct sockaddr *)&(sock->active_sock_->remote_end_.addr_), sock->active_sock_->remote_end_.len_);
}
|