1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
/*
* uAnytun
*
* uAnytun is a tiny implementation of SATP. Unlike Anytun which is a full
* featured implementation uAnytun has no support for multiple connections
* or synchronisation. It is a small single threaded implementation intended
* to act as a client on small platforms.
* The secure anycast tunneling protocol (satp) defines a protocol used
* for communication between any combination of unicast and anycast
* tunnel endpoints. It has less protocol overhead than IPSec in Tunnel
* mode and allows tunneling of every ETHER TYPE protocol (e.g.
* ethernet, ip, arp ...). satp directly includes cryptography and
* message authentication based on the methods used by SRTP. It is
* intended to deliver a generic, scaleable and secure solution for
* tunneling and relaying of packets of any protocol.
*
*
* Copyright (C) 2007-2014 Christian Pointner <equinox@anytun.org>
*
* This file is part of uAnytun.
*
* uAnytun is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* uAnytun is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with uAnytun. If not, see <http://www.gnu.org/licenses/>.
*
* In addition, as a special exception, the copyright holders give
* permission to link the code of portions of this program with the
* OpenSSL library under certain conditions as described in each
* individual source file, and distribute linked combinations
* including the two.
* You must obey the GNU General Public License in all respects
* for all of the code used other than OpenSSL. If you modify
* file(s) with this exception, you may extend this exception to your
* version of the file(s), but you are not obligated to do so. If you
* do not wish to do so, delete this exception statement from your
* version. If you delete this exception statement from all source
* files in the program, then also delete it here.
*/
#include "datatypes.h"
#include "key_derivation.h"
#if defined(USE_SSL_CRYPTO)
#include <openssl/crypto.h>
#include <openssl/sha.h>
#include <openssl/modes.h>
#elif defined(USE_NETTLE)
#include <nettle/sha1.h>
#include <nettle/sha2.h>
#include <nettle/ctr.h>
#endif
#include "log.h"
#include <stdlib.h>
#include <string.h>
int key_derivation_init(key_derivation_t* kd, const char* type, role_t role, const char* passphrase, u_int8_t* key, u_int32_t key_len, u_int8_t* salt, u_int32_t salt_len)
{
if(!kd)
return -1;
kd->role_ = role;
kd->key_length_ = 0;
kd->type_ = kd_unknown;
if(!strcmp(type, "null"))
kd->type_ = kd_null;
else if(!strncmp(type, "aes-ctr", 7)) {
kd->type_ = kd_aes_ctr;
if(type[7] == 0) {
kd->key_length_ = KD_AESCTR_DEFAULT_KEY_LENGTH;
}
else if(type[7] != '-')
return -1;
else {
const char* tmp = &type[8];
kd->key_length_ = atoi(tmp);
}
}
else {
log_printf(ERROR, "unknown key derivation type");
return -1;
}
switch(role) {
case ROLE_LEFT: log_printf(NOTICE, "key derivation role: left"); break;
case ROLE_RIGHT: log_printf(NOTICE, "key derivation role: right"); break;
default: log_printf(NOTICE, "key derivation role: unknown"); break;
}
kd->params_ = NULL;
if(!key) {
kd->master_key_.buf_ = NULL;
kd->master_key_.length_ = 0;
}
else {
kd->master_key_.buf_ = malloc(key_len);
if(!kd->master_key_.buf_)
return -2;
memcpy(kd->master_key_.buf_, key, key_len);
kd->master_key_.length_ = key_len;
}
if(!salt) {
kd->master_salt_.buf_ = NULL;
kd->master_salt_.length_ = 0;
}
else {
kd->master_salt_.buf_ = malloc(salt_len);
if(!kd->master_salt_.buf_) {
if(kd->master_key_.buf_)
free(kd->master_key_.buf_);
return -2;
}
memcpy(kd->master_salt_.buf_, salt, salt_len);
kd->master_salt_.length_ = salt_len;
}
int ret = 0;
if(kd->type_ == kd_aes_ctr)
ret = key_derivation_aesctr_init(kd, passphrase);
if(ret)
key_derivation_close(kd);
return ret;
}
#ifndef NO_PASSPHRASE
int key_derivation_generate_master_key(key_derivation_t* kd, const char* passphrase, u_int16_t key_length)
{
if(!kd || !passphrase)
return -1;
if(kd->master_key_.buf_) {
log_printf(WARNING, "master key and passphrase provided, ignoring passphrase");
return 0;
}
log_printf(NOTICE, "using passphrase to generate master key");
if(!key_length || (key_length % 8)) {
log_printf(ERROR, "bad master key length");
return -1;
}
#if defined(USE_SSL_CRYPTO)
if(key_length > (SHA256_DIGEST_LENGTH * 8)) {
#elif defined(USE_NETTLE)
if(key_length > (SHA256_DIGEST_SIZE * 8)) {
#else // USE_GCRYPT is the default
if(key_length > (gcry_md_get_algo_dlen(GCRY_MD_SHA256) * 8)) {
#endif
log_printf(ERROR, "master key too long for passphrase algorithm");
return -1;
}
buffer_t digest;
#if defined(USE_SSL_CRYPTO)
digest.length_ = SHA256_DIGEST_LENGTH;
#elif defined(USE_NETTLE)
digest.length_ = SHA256_DIGEST_SIZE;
#else // USE_GCRYPT is the default
digest.length_ = gcry_md_get_algo_dlen(GCRY_MD_SHA256);
#endif
digest.buf_ = malloc(digest.length_);
if(!digest.buf_)
return -2;
#if defined(USE_SSL_CRYPTO)
SHA256((const u_int8_t*)passphrase, strlen(passphrase), digest.buf_);
#elif defined(USE_NETTLE)
struct sha256_ctx ctx;
sha256_init(&ctx);
sha256_update(&ctx, strlen(passphrase), (const u_int8_t*)passphrase);
sha256_digest(&ctx, digest.length_, digest.buf_);
#else // USE_GCRYPT is the default
gcry_md_hash_buffer(GCRY_MD_SHA256, digest.buf_, passphrase, strlen(passphrase));
#endif
kd->master_key_.length_ = key_length/8;
kd->master_key_.buf_ = malloc(kd->master_key_.length_);
if(!kd->master_key_.buf_) {
kd->master_key_.length_ = 0;
free(digest.buf_);
return -2;
}
memcpy(kd->master_key_.buf_, &digest.buf_[digest.length_ - kd->master_key_.length_], kd->master_key_.length_);
free(digest.buf_);
return 0;
}
int key_derivation_generate_master_salt(key_derivation_t* kd, const char* passphrase, u_int16_t salt_length)
{
if(!kd || !passphrase)
return -1;
if(kd->master_salt_.buf_) {
log_printf(WARNING, "master salt and passphrase provided, ignoring passphrase");
return 0;
}
log_printf(NOTICE, "using passphrase to generate master salt");
if(!salt_length || (salt_length % 8)) {
log_printf(ERROR, "bad master salt length");
return -1;
}
#if defined(USE_SSL_CRYPTO)
if(salt_length > (SHA_DIGEST_LENGTH * 8)) {
#elif defined(USE_NETTLE)
if(salt_length > (SHA1_DIGEST_SIZE * 8)) {
#else // USE_GCRYPT is the default
if(salt_length > (gcry_md_get_algo_dlen(GCRY_MD_SHA1) * 8)) {
#endif
log_printf(ERROR, "master salt too long for passphrase algorithm");
return -1;
}
buffer_t digest;
#if defined(USE_SSL_CRYPTO)
digest.length_ = SHA_DIGEST_LENGTH;
#elif defined(USE_NETTLE)
digest.length_ = SHA1_DIGEST_SIZE;
#else // USE_GCRYPT is the default
digest.length_ = gcry_md_get_algo_dlen(GCRY_MD_SHA1);
#endif
digest.buf_ = malloc(digest.length_);
if(!digest.buf_)
return -2;
#if defined(USE_SSL_CRYPTO)
SHA1((const u_int8_t*)passphrase, strlen(passphrase), digest.buf_);
#elif defined(USE_NETTLE)
struct sha1_ctx ctx;
sha1_init(&ctx);
sha1_update(&ctx, strlen(passphrase), (const u_int8_t*)passphrase);
sha1_digest(&ctx, digest.length_, digest.buf_);
#else // USE_GCRYPT is the default
gcry_md_hash_buffer(GCRY_MD_SHA1, digest.buf_, passphrase, strlen(passphrase));
#endif
kd->master_salt_.length_ = salt_length/8;
kd->master_salt_.buf_ = malloc(kd->master_salt_.length_);
if(!kd->master_salt_.buf_) {
kd->master_salt_.length_ = 0;
free(digest.buf_);
return -2;
}
memcpy(kd->master_salt_.buf_, &digest.buf_[digest.length_ - kd->master_salt_.length_], kd->master_salt_.length_);
free(digest.buf_);
return 0;
}
#endif
void key_derivation_close(key_derivation_t* kd)
{
if(!kd)
return;
if(kd->type_ == kd_aes_ctr)
key_derivation_aesctr_close(kd);
if(kd->master_key_.buf_)
free(kd->master_key_.buf_);
if(kd->master_salt_.buf_)
free(kd->master_salt_.buf_);
}
int key_derivation_generate(key_derivation_t* kd, key_derivation_dir_t dir, satp_prf_label_t label, seq_nr_t seq_nr, u_int8_t* key, u_int32_t len)
{
if(!kd || !key)
return -1;
if(label >= LABEL_NIL) {
log_printf(ERROR, "unknown label 0x%02X", label);
return -1;
}
int ret = 0;
if(kd->type_ == kd_null)
ret = key_derivation_null_generate(key, len);
else if(kd->type_ == kd_aes_ctr)
ret = key_derivation_aesctr_generate(kd, dir, label, seq_nr, key, len);
else {
log_printf(ERROR, "unknown key derivation type");
return -1;
}
return ret;
}
satp_prf_label_t convert_label(role_t role, key_derivation_dir_t dir, satp_prf_label_t label)
{
switch(label) {
case LABEL_ENC: {
if(dir == kd_outbound) {
if(role == ROLE_LEFT) return LABEL_LEFT_ENC;
if(role == ROLE_RIGHT) return LABEL_RIGHT_ENC;
}
else {
if(role == ROLE_LEFT) return LABEL_RIGHT_ENC;
if(role == ROLE_RIGHT) return LABEL_LEFT_ENC;
}
break;
}
case LABEL_SALT: {
if(dir == kd_outbound) {
if(role == ROLE_LEFT) return LABEL_LEFT_SALT;
if(role == ROLE_RIGHT) return LABEL_RIGHT_SALT;
}
else {
if(role == ROLE_LEFT) return LABEL_RIGHT_SALT;
if(role == ROLE_RIGHT) return LABEL_LEFT_SALT;
}
break;
}
case LABEL_AUTH: {
if(dir == kd_outbound) {
if(role == ROLE_LEFT) return LABEL_LEFT_AUTH;
if(role == ROLE_RIGHT) return LABEL_RIGHT_AUTH;
}
else {
if(role == ROLE_LEFT) return LABEL_RIGHT_AUTH;
if(role == ROLE_RIGHT) return LABEL_LEFT_AUTH;
}
break;
}
}
return label;
}
/* ---------------- NULL Key Derivation ---------------- */
int key_derivation_null_generate(u_int8_t* key, u_int32_t len)
{
memset(key, 0, len);
return 1;
}
/* ---------------- AES-Ctr Key Derivation ---------------- */
int key_derivation_aesctr_init(key_derivation_t* kd, const char* passphrase)
{
if(!kd)
return -1;
if(kd->params_)
free(kd->params_);
kd->params_ = malloc(sizeof(key_derivation_aesctr_param_t));
if(!kd->params_)
return -2;
key_derivation_aesctr_param_t* params = kd->params_;
#ifdef USE_GCRYPT
params->handle_ = 0;
#endif
#ifndef NO_PASSPHRASE
if(passphrase) {
int ret = key_derivation_generate_master_key(kd, passphrase, kd->key_length_);
if(ret)
return ret;
ret = key_derivation_generate_master_salt(kd, passphrase, KD_AESCTR_SALT_LENGTH*8);
if(ret)
return ret;
}
#endif
#if defined(USE_SSL_CRYPTO)
int ret = AES_set_encrypt_key(kd->master_key_.buf_, kd->master_key_.length_*8, ¶ms->aes_key_);
if(ret) {
log_printf(ERROR, "failed to set key derivation ssl aes-key (code: %d)", ret);
return -1;
}
#elif defined(USE_NETTLE)
aes_set_encrypt_key(¶ms->ctx_, kd->master_key_.length_, kd->master_key_.buf_);
#else // USE_GCRYPT is the default
int algo;
switch(kd->key_length_) {
case 128: algo = GCRY_CIPHER_AES128; break;
case 192: algo = GCRY_CIPHER_AES192; break;
case 256: algo = GCRY_CIPHER_AES256; break;
default: {
log_printf(ERROR, "key derivation key length of %d Bits is not supported", kd->key_length_);
return -1;
}
}
gcry_error_t err = gcry_cipher_open(¶ms->handle_, algo, GCRY_CIPHER_MODE_CTR, 0);
if(err) {
log_printf(ERROR, "failed to open key derivation cipher: %s", gcry_strerror(err));
return -1;
}
err = gcry_cipher_setkey(params->handle_, kd->master_key_.buf_, kd->master_key_.length_);
if(err) {
log_printf(ERROR, "failed to set key derivation key: %s", gcry_strerror(err));
return -1;
}
#endif
return 0;
}
void key_derivation_aesctr_close(key_derivation_t* kd)
{
if(!kd)
return;
if(kd->params_) {
#ifdef USE_GCRYPT
key_derivation_aesctr_param_t* params = kd->params_;
if(params->handle_)
gcry_cipher_close(params->handle_);
#endif
free(kd->params_);
}
}
int key_derivation_aesctr_calc_ctr(key_derivation_t* kd, key_derivation_dir_t dir, satp_prf_label_t label, seq_nr_t seq_nr)
{
if(!kd || !kd->params_)
return -1;
key_derivation_aesctr_param_t* params = kd->params_;
if(kd->master_salt_.length_ != KD_AESCTR_SALT_LENGTH) {
log_printf(ERROR, "master salt has wrong length");
return -1;
}
memcpy(params->ctr_.salt_.buf_, kd->master_salt_.buf_, KD_AESCTR_SALT_LENGTH);
params->ctr_.salt_.zero_ = 0;
params->ctr_.params_.label_ ^= SATP_PRF_LABEL_T_HTON(convert_label(kd->role_, dir, label));
params->ctr_.params_.seq_ ^= SEQ_NR_T_HTON(seq_nr);
return 0;
}
int key_derivation_aesctr_generate(key_derivation_t* kd, key_derivation_dir_t dir, satp_prf_label_t label, seq_nr_t seq_nr, u_int8_t* key, u_int32_t len)
{
if(!kd || !kd->params_ || !kd->master_key_.buf_ || !kd->master_salt_.buf_) {
log_printf(ERROR, "key derivation not initialized or no key or salt set");
return -1;
}
key_derivation_aesctr_param_t* params = kd->params_;
if(key_derivation_aesctr_calc_ctr(kd, dir, label, seq_nr)) {
log_printf(ERROR, "failed to calculate key derivation CTR");
return -1;
}
#if defined(USE_SSL_CRYPTO)
if(KD_AESCTR_CTR_LENGTH != AES_BLOCK_SIZE) {
log_printf(ERROR, "failed to set key derivation CTR: size doesn't fit");
return -1;
}
u_int32_t num = 0;
memset(key, 0, len);
memset(params->ecount_buf_, 0, AES_BLOCK_SIZE);
CRYPTO_ctr128_encrypt(key, key, len, ¶ms->aes_key_, params->ctr_.buf_, params->ecount_buf_, &num, (block128_f)AES_encrypt);
#elif defined(USE_NETTLE)
if(KD_AESCTR_CTR_LENGTH != AES_BLOCK_SIZE) {
log_printf(ERROR, "failed to set cipher CTR: size doesn't fit");
return -1;
}
memset(key, 0, len);
ctr_crypt(¶ms->ctx_, (nettle_crypt_func *)(aes_encrypt), AES_BLOCK_SIZE, params->ctr_.buf_, len, key, key);
#else // USE_GCRYPT is the default
gcry_error_t err = gcry_cipher_reset(params->handle_);
if(err) {
log_printf(ERROR, "failed to reset key derivation cipher: %s", gcry_strerror(err));
return -1;
}
err = gcry_cipher_setctr(params->handle_, params->ctr_.buf_, KD_AESCTR_CTR_LENGTH);
if(err) {
log_printf(ERROR, "failed to set key derivation CTR: %s", gcry_strerror(err));
return -1;
}
memset(key, 0, len);
err = gcry_cipher_encrypt(params->handle_, key, len, NULL, 0);
if(err) {
log_printf(ERROR, "failed to generate key derivation bitstream: %s", gcry_strerror(err));
return -1;
}
#endif
return 0;
}
|