/* * uAnytun * * uAnytun is a tiny implementation of SATP. Unlike Anytun which is a full * featured implementation uAnytun has no support for multiple connections * or synchronisation. It is a small single threaded implementation intended * to act as a client on small platforms. * The secure anycast tunneling protocol (satp) defines a protocol used * for communication between any combination of unicast and anycast * tunnel endpoints. It has less protocol overhead than IPSec in Tunnel * mode and allows tunneling of every ETHER TYPE protocol (e.g. * ethernet, ip, arp ...). satp directly includes cryptography and * message authentication based on the methodes used by SRTP. It is * intended to deliver a generic, scaleable and secure solution for * tunneling and relaying of packets of any protocol. * * * Copyright (C) 2007-2008 Christian Pointner * * This file is part of uAnytun. * * uAnytun is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * uAnytun is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with uAnytun. If not, see . */ #include "datatypes.h" #include "udp.h" #include "log.h" #include #include #include #include #include #include #include #include #include int udp_init(udp_t* sock, const char* local_addr, const char* port, resolv_addr_type_t resolv_type) { if(!sock || !port) return -1; sock->socks_ = NULL; sock->active_sock_ = NULL; memset(&(sock->remote_end_), 0, sizeof(sock->remote_end_)); sock->remote_end_set_ = 0; struct addrinfo hints, *res; res = NULL; memset (&hints, 0, sizeof (hints)); hints.ai_socktype = SOCK_DGRAM; hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; switch(resolv_type) { case IPV4_ONLY: hints.ai_family = AF_INET; break; case IPV6_ONLY: hints.ai_family = AF_INET6; break; default: hints.ai_family = AF_UNSPEC; break; } int errcode = getaddrinfo(local_addr, port, &hints, &res); if (errcode != 0) { log_printf(ERROR, "Error resolving local address (%s:%s): %s", (local_addr) ? local_addr : "*", port, gai_strerror(errcode)); udp_close(sock); return -1; } if(!res) { udp_close(sock); log_printf(ERROR, "getaddrinfo returned no address for %s:%s", local_addr, port); return -1; } struct addrinfo* r = res; udp_socket_t* prev_sock = NULL; while(r) { udp_socket_t* new_sock = malloc(sizeof(udp_socket_t)); if(!new_sock) { log_printf(ERROR, "memory error at udp_init"); freeaddrinfo(res); udp_close(sock); return -2; } memset(&(new_sock->local_end_), 0, sizeof(new_sock->local_end_)); new_sock->next_ = NULL; if(!sock->socks_) { sock->socks_ = new_sock; prev_sock = new_sock; } else { prev_sock->next_ = new_sock; prev_sock = new_sock; } memcpy(&(new_sock->local_end_), r->ai_addr, r->ai_addrlen); new_sock->fd_ = socket(r->ai_family, SOCK_DGRAM, 0); if(new_sock->fd_ < 0) { log_printf(ERROR, "Error on opening udp socket: %s", strerror(errno)); freeaddrinfo(res); udp_close(sock); return -1; } if(r->ai_family == AF_INET6) { int on = 1; if(setsockopt(new_sock->fd_, IPPROTO_IPV6, IPV6_V6ONLY, &on, sizeof(on))) log_printf(ERROR, "Error on setting IPV6_V6ONLY socket option: %s", strerror(errno)); } errcode = bind(new_sock->fd_, r->ai_addr, r->ai_addrlen); if(errcode) { log_printf(ERROR, "Error on binding udp socket: %s", strerror(errno)); freeaddrinfo(res); udp_close(sock); return -1; } char* local_string = udp_endpoint_to_string(new_sock->local_end_); if(local_string) { log_printf(NOTICE, "listening on: %s", local_string); free(local_string); } r = r->ai_next; } freeaddrinfo(res); return 0; } int udp_init_fd_set(udp_t* sock, fd_set* set) { int max_fd = 0; udp_socket_t* s = sock->socks_; while(s) { FD_SET(s->fd_, set); max_fd = s->fd_ > max_fd ? s->fd_ : max_fd; s = s->next_; } return max_fd; } int udp_set_remote(udp_t* sock, const char* remote_addr, const char* port, resolv_addr_type_t resolv_type) { if(!sock || !remote_addr || !port) return -1; struct addrinfo hints, *res; res = NULL; memset (&hints, 0, sizeof (hints)); hints.ai_socktype = SOCK_DGRAM; switch(resolv_type) { case IPV4_ONLY: hints.ai_family = PF_INET; break; case IPV6_ONLY: hints.ai_family = PF_INET6; break; default: hints.ai_family = PF_UNSPEC; break; } int errcode = getaddrinfo(remote_addr, port, &hints, &res); if (errcode != 0) { log_printf(ERROR, "Error resolving remote address (%s:%s): %s", (remote_addr) ? remote_addr : "*", port, gai_strerror(errcode)); return -1; } if(!res) { log_printf(ERROR, "getaddrinfo returned no address for %s:%s", remote_addr, port); return -1; } memcpy(&(sock->remote_end_), res->ai_addr, res->ai_addrlen); sock->remote_end_set_ = 1; if(!sock->active_sock_) { udp_socket_t* s = sock->socks_; while(s) { if((((struct sockaddr *)&s->local_end_)->sa_family) == res->ai_family) { sock->active_sock_ = s; break; } s = s->next_; } } freeaddrinfo(res); return 0; } void udp_set_active_sock(udp_t* sock, int fd) { if(!sock || (sock->active_sock_ && sock->active_sock_->fd_ == fd)) return; udp_socket_t* s = sock->socks_; while(s) { if(s->fd_ == fd) { sock->active_sock_ = s; return; } s = s->next_; } } void udp_close(udp_t* sock) { if(!sock) return; while(sock->socks_) { if(sock->socks_->fd_ > 0) close(sock->socks_->fd_); udp_socket_t*s = sock->socks_; sock->socks_ = sock->socks_->next_; free(s); } sock->socks_ = NULL; } char* udp_endpoint_to_string(udp_endpoint_t e) { void* ptr; u_int16_t port; size_t addrstr_len = 0; char* addrstr, *ret; char addrport_sep = ':'; switch (((struct sockaddr *)&e)->sa_family) { case AF_INET: ptr = &((struct sockaddr_in *)&e)->sin_addr; port = ntohs(((struct sockaddr_in *)&e)->sin_port); addrstr_len = INET_ADDRSTRLEN + 1; addrport_sep = ':'; break; case AF_INET6: ptr = &((struct sockaddr_in6 *)&e)->sin6_addr; port = ntohs(((struct sockaddr_in6 *)&e)->sin6_port); addrstr_len = INET6_ADDRSTRLEN + 1; addrport_sep = '.'; break; default: asprintf(&ret, "unknown address type"); return ; } addrstr = malloc(addrstr_len); if(!addrstr) return NULL; inet_ntop (((struct sockaddr *)&e)->sa_family, ptr, addrstr, addrstr_len); asprintf(&ret, "%s%c%d", addrstr, addrport_sep ,port); free(addrstr); return ret; } char* udp_get_remote_end_string(udp_t* sock) { if(!sock || !sock->remote_end_set_) return NULL; return udp_endpoint_to_string(sock->remote_end_); } int udp_read(udp_t* sock, int fd, u_int8_t* buf, u_int32_t len, udp_endpoint_t* remote_end) { if(!sock || !remote_end) return -1; socklen_t socklen = sizeof(*remote_end); return recvfrom(fd, buf, len, 0, (struct sockaddr *)remote_end, &socklen); } int udp_write(udp_t* sock, u_int8_t* buf, u_int32_t len) { if(!sock || !sock->remote_end_set_ || !sock->active_sock_) return 0; socklen_t socklen = sizeof(sock->remote_end_); if((((struct sockaddr *)&sock->active_sock_->local_end_)->sa_family) == AF_INET) socklen = sizeof(struct sockaddr_in); else if ((((struct sockaddr *)&sock->active_sock_->local_end_)->sa_family) == AF_INET6) socklen = sizeof(struct sockaddr_in6); return sendto(sock->active_sock_->fd_, buf, len, 0, (struct sockaddr *)&(sock->remote_end_), socklen); }