1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
/*
* sha1.c
*
* an implementation of the Secure Hash Algorithm v.1 (SHA-1),
* specified in FIPS 180-1
*
* David A. McGrew
* Cisco Systems, Inc.
*/
/*
*
* Copyright (c) 2001-2006, Cisco Systems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Cisco Systems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sha1.h"
debug_module_t mod_sha1 = {
0, /* debugging is off by default */
"sha-1" /* printable module name */
};
/* SN == Rotate left N bits */
#define S1(X) ((X << 1) | (X >> 31))
#define S5(X) ((X << 5) | (X >> 27))
#define S30(X) ((X << 30) | (X >> 2))
#define f0(B,C,D) ((B & C) | (~B & D))
#define f1(B,C,D) (B ^ C ^ D)
#define f2(B,C,D) ((B & C) | (B & D) | (C & D))
#define f3(B,C,D) (B ^ C ^ D)
/*
* nota bene: the variable K0 appears in the curses library, so we
* give longer names to these variables to avoid spurious warnings
* on systems that uses curses
*/
uint32_t SHA_K0 = 0x5A827999; /* Kt for 0 <= t <= 19 */
uint32_t SHA_K1 = 0x6ED9EBA1; /* Kt for 20 <= t <= 39 */
uint32_t SHA_K2 = 0x8F1BBCDC; /* Kt for 40 <= t <= 59 */
uint32_t SHA_K3 = 0xCA62C1D6; /* Kt for 60 <= t <= 79 */
void
sha1(const uint8_t *msg, int octets_in_msg, uint32_t hash_value[5]) {
sha1_ctx_t ctx;
sha1_init(&ctx);
sha1_update(&ctx, msg, octets_in_msg);
sha1_final(&ctx, hash_value);
}
/*
* sha1_core(M, H) computes the core compression function, where M is
* the next part of the message (in network byte order) and H is the
* intermediate state { H0, H1, ...} (in host byte order)
*
* this function does not do any of the padding required in the
* complete SHA1 function
*
* this function is used in the SEAL 3.0 key setup routines
* (crypto/cipher/seal.c)
*/
void
sha1_core(const uint32_t M[16], uint32_t hash_value[5]) {
uint32_t H0;
uint32_t H1;
uint32_t H2;
uint32_t H3;
uint32_t H4;
uint32_t W[80];
uint32_t A, B, C, D, E, TEMP;
int t;
/* copy hash_value into H0, H1, H2, H3, H4 */
H0 = hash_value[0];
H1 = hash_value[1];
H2 = hash_value[2];
H3 = hash_value[3];
H4 = hash_value[4];
/* copy/xor message into array */
W[0] = be32_to_cpu(M[0]);
W[1] = be32_to_cpu(M[1]);
W[2] = be32_to_cpu(M[2]);
W[3] = be32_to_cpu(M[3]);
W[4] = be32_to_cpu(M[4]);
W[5] = be32_to_cpu(M[5]);
W[6] = be32_to_cpu(M[6]);
W[7] = be32_to_cpu(M[7]);
W[8] = be32_to_cpu(M[8]);
W[9] = be32_to_cpu(M[9]);
W[10] = be32_to_cpu(M[10]);
W[11] = be32_to_cpu(M[11]);
W[12] = be32_to_cpu(M[12]);
W[13] = be32_to_cpu(M[13]);
W[14] = be32_to_cpu(M[14]);
W[15] = be32_to_cpu(M[15]);
TEMP = W[13] ^ W[8] ^ W[2] ^ W[0]; W[16] = S1(TEMP);
TEMP = W[14] ^ W[9] ^ W[3] ^ W[1]; W[17] = S1(TEMP);
TEMP = W[15] ^ W[10] ^ W[4] ^ W[2]; W[18] = S1(TEMP);
TEMP = W[16] ^ W[11] ^ W[5] ^ W[3]; W[19] = S1(TEMP);
TEMP = W[17] ^ W[12] ^ W[6] ^ W[4]; W[20] = S1(TEMP);
TEMP = W[18] ^ W[13] ^ W[7] ^ W[5]; W[21] = S1(TEMP);
TEMP = W[19] ^ W[14] ^ W[8] ^ W[6]; W[22] = S1(TEMP);
TEMP = W[20] ^ W[15] ^ W[9] ^ W[7]; W[23] = S1(TEMP);
TEMP = W[21] ^ W[16] ^ W[10] ^ W[8]; W[24] = S1(TEMP);
TEMP = W[22] ^ W[17] ^ W[11] ^ W[9]; W[25] = S1(TEMP);
TEMP = W[23] ^ W[18] ^ W[12] ^ W[10]; W[26] = S1(TEMP);
TEMP = W[24] ^ W[19] ^ W[13] ^ W[11]; W[27] = S1(TEMP);
TEMP = W[25] ^ W[20] ^ W[14] ^ W[12]; W[28] = S1(TEMP);
TEMP = W[26] ^ W[21] ^ W[15] ^ W[13]; W[29] = S1(TEMP);
TEMP = W[27] ^ W[22] ^ W[16] ^ W[14]; W[30] = S1(TEMP);
TEMP = W[28] ^ W[23] ^ W[17] ^ W[15]; W[31] = S1(TEMP);
/* process the remainder of the array */
for (t=32; t < 80; t++) {
TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
W[t] = S1(TEMP);
}
A = H0; B = H1; C = H2; D = H3; E = H4;
for (t=0; t < 20; t++) {
TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
E = D; D = C; C = S30(B); B = A; A = TEMP;
}
for ( ; t < 40; t++) {
TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
E = D; D = C; C = S30(B); B = A; A = TEMP;
}
for ( ; t < 60; t++) {
TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
E = D; D = C; C = S30(B); B = A; A = TEMP;
}
for ( ; t < 80; t++) {
TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
E = D; D = C; C = S30(B); B = A; A = TEMP;
}
hash_value[0] = H0 + A;
hash_value[1] = H1 + B;
hash_value[2] = H2 + C;
hash_value[3] = H3 + D;
hash_value[4] = H4 + E;
return;
}
void
sha1_init(sha1_ctx_t *ctx) {
/* initialize state vector */
ctx->H[0] = 0x67452301;
ctx->H[1] = 0xefcdab89;
ctx->H[2] = 0x98badcfe;
ctx->H[3] = 0x10325476;
ctx->H[4] = 0xc3d2e1f0;
/* indicate that message buffer is empty */
ctx->octets_in_buffer = 0;
/* reset message bit-count to zero */
ctx->num_bits_in_msg = 0;
}
void
sha1_update(sha1_ctx_t *ctx, const uint8_t *msg, int octets_in_msg) {
int i;
uint8_t *buf = (uint8_t *)ctx->M;
/* update message bit-count */
ctx->num_bits_in_msg += octets_in_msg * 8;
/* loop over 16-word blocks of M */
while (octets_in_msg > 0) {
if (octets_in_msg + ctx->octets_in_buffer >= 64) {
/*
* copy words of M into msg buffer until that buffer is full,
* converting them into host byte order as needed
*/
octets_in_msg -= (64 - ctx->octets_in_buffer);
for (i=ctx->octets_in_buffer; i < 64; i++)
buf[i] = *msg++;
ctx->octets_in_buffer = 0;
/* process a whole block */
debug_print(mod_sha1, "(update) running sha1_core()", NULL);
sha1_core(ctx->M, ctx->H);
} else {
debug_print(mod_sha1, "(update) not running sha1_core()", NULL);
for (i=ctx->octets_in_buffer;
i < (ctx->octets_in_buffer + octets_in_msg); i++)
buf[i] = *msg++;
ctx->octets_in_buffer += octets_in_msg;
octets_in_msg = 0;
}
}
}
/*
* sha1_final(ctx, output) computes the result for ctx and copies it
* into the twenty octets located at *output
*/
void
sha1_final(sha1_ctx_t *ctx, uint32_t *output) {
uint32_t A, B, C, D, E, TEMP;
uint32_t W[80];
int i, t;
/*
* process the remaining octets_in_buffer, padding and terminating as
* necessary
*/
{
int tail = ctx->octets_in_buffer % 4;
/* copy/xor message into array */
for (i=0; i < (ctx->octets_in_buffer+3)/4; i++)
W[i] = be32_to_cpu(ctx->M[i]);
/* set the high bit of the octet immediately following the message */
switch (tail) {
case (3):
W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffffff00) | 0x80;
W[i] = 0x0;
break;
case (2):
W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffff0000) | 0x8000;
W[i] = 0x0;
break;
case (1):
W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xff000000) | 0x800000;
W[i] = 0x0;
break;
case (0):
W[i] = 0x80000000;
break;
}
/* zeroize remaining words */
for (i++ ; i < 15; i++)
W[i] = 0x0;
/*
* if there is room at the end of the word array, then set the
* last word to the bit-length of the message; otherwise, set that
* word to zero and then we need to do one more run of the
* compression algo.
*/
if (ctx->octets_in_buffer < 56)
W[15] = ctx->num_bits_in_msg;
else if (ctx->octets_in_buffer < 60)
W[15] = 0x0;
/* process the word array */ for (t=16; t < 80; t++) {
TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
W[t] = S1(TEMP);
}
A = ctx->H[0];
B = ctx->H[1];
C = ctx->H[2];
D = ctx->H[3];
E = ctx->H[4];
for (t=0; t < 20; t++) {
TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
E = D; D = C; C = S30(B); B = A; A = TEMP;
}
for ( ; t < 40; t++) {
TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
E = D; D = C; C = S30(B); B = A; A = TEMP;
}
for ( ; t < 60; t++) {
TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
E = D; D = C; C = S30(B); B = A; A = TEMP;
}
for ( ; t < 80; t++) {
TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
E = D; D = C; C = S30(B); B = A; A = TEMP;
}
ctx->H[0] += A;
ctx->H[1] += B;
ctx->H[2] += C;
ctx->H[3] += D;
ctx->H[4] += E;
}
debug_print(mod_sha1, "(final) running sha1_core()", NULL);
if (ctx->octets_in_buffer >= 56) {
debug_print(mod_sha1, "(final) running sha1_core() again", NULL);
/* we need to do one final run of the compression algo */
/*
* set initial part of word array to zeros, and set the
* final part to the number of bits in the message
*/
for (i=0; i < 15; i++)
W[i] = 0x0;
W[15] = ctx->num_bits_in_msg;
/* process the word array */
for (t=16; t < 80; t++) {
TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
W[t] = S1(TEMP);
}
A = ctx->H[0];
B = ctx->H[1];
C = ctx->H[2];
D = ctx->H[3];
E = ctx->H[4];
for (t=0; t < 20; t++) {
TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
E = D; D = C; C = S30(B); B = A; A = TEMP;
}
for ( ; t < 40; t++) {
TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
E = D; D = C; C = S30(B); B = A; A = TEMP;
}
for ( ; t < 60; t++) {
TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
E = D; D = C; C = S30(B); B = A; A = TEMP;
}
for ( ; t < 80; t++) {
TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
E = D; D = C; C = S30(B); B = A; A = TEMP;
}
ctx->H[0] += A;
ctx->H[1] += B;
ctx->H[2] += C;
ctx->H[3] += D;
ctx->H[4] += E;
}
/* copy result into output buffer */
output[0] = be32_to_cpu(ctx->H[0]);
output[1] = be32_to_cpu(ctx->H[1]);
output[2] = be32_to_cpu(ctx->H[2]);
output[3] = be32_to_cpu(ctx->H[3]);
output[4] = be32_to_cpu(ctx->H[4]);
/* indicate that message buffer in context is empty */
ctx->octets_in_buffer = 0;
return;
}
|