1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
/*
* anytun
*
* The secure anycast tunneling protocol (satp) defines a protocol used
* for communication between any combination of unicast and anycast
* tunnel endpoints. It has less protocol overhead than IPSec in Tunnel
* mode and allows tunneling of every ETHER TYPE protocol (e.g.
* ethernet, ip, arp ...). satp directly includes cryptography and
* message authentication based on the methodes used by SRTP. It is
* intended to deliver a generic, scaleable and secure solution for
* tunneling and relaying of packets of any protocol.
*
*
* Copyright (C) 2007-2009 Othmar Gsenger, Erwin Nindl,
* Christian Pointner <satp@wirdorange.org>
*
* This file is part of Anytun.
*
* Anytun is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* Anytun is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with anytun. If not, see <http://www.gnu.org/licenses/>.
*/
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/thread.hpp>
#include "datatypes.h"
#include "packetSource.h"
#include "log.h"
#include "resolver.h"
#include "options.h"
#include "signalController.h"
#include "anytunError.h"
void PacketSource::waitUntilReady()
{
ready_sem_.down();
}
UDPPacketSource::UDPPacketSource(std::string localaddr, std::string port)
{
last_recv_sock_.buf_ = NULL;
last_recv_sock_.len_ = 0;
last_recv_sock_.sock_ = NULL;
gResolver.resolveUdp(localaddr, port, boost::bind(&UDPPacketSource::onResolve, this, _1), boost::bind(&UDPPacketSource::onError, this, _1), gOpt.getResolvAddrType());
}
UDPPacketSource::~UDPPacketSource()
{
std::list<sockets_element_t>::iterator it = sockets_.begin();
for(;it != sockets_.end(); ++it) {
delete[](it->buf_);
delete(it->sock_);
}
}
void UDPPacketSource::onResolve(PacketSourceResolverIt& it)
{
while(it != PacketSourceResolverIt()) {
PacketSourceEndpoint e = *it;
cLog.msg(Log::PRIO_NOTICE) << "opening socket: " << e;
sockets_element_t sock;
sock.buf_ = NULL;
sock.len_ = 0;
sock.sock_ = new proto::socket(io_service_);
sock.sock_->open(e.protocol());
#ifndef _MSC_VER
if(e.protocol() == proto::v6()) {
boost::asio::ip::v6_only option(true);
sock.sock_->set_option(option);
}
#endif
sock.sock_->bind(e);
sockets_.push_back(sock);
it++;
}
ready_sem_.up();
}
void UDPPacketSource::onError(const std::runtime_error& e)
{
gSignalController.inject(SIGERROR, e.what());
}
void UDPPacketSource::recv_thread(thread_result_t result)
{
cLog.msg(Log::PRIO_DEBUG) << "started receiver thread for " << result.sock_->local_endpoint();
result.len_ = static_cast<u_int32_t>(result.sock_->receive_from(boost::asio::buffer(result.buf_, result.len_), result.remote_));
{
Lock lock(thread_result_mutex_);
thread_result_queue_.push(result);
}
thread_result_sem_.up();
}
u_int32_t UDPPacketSource::recv(u_int8_t* buf, u_int32_t len, PacketSourceEndpoint& remote)
{
if(sockets_.size() == 1)
return static_cast<u_int32_t>(sockets_.begin()->sock_->receive_from(boost::asio::buffer(buf, len), remote));
if(!last_recv_sock_.sock_) {
std::list<sockets_element_t>::iterator it = sockets_.begin();
for(;it != sockets_.end(); ++it) {
if(it == sockets_.begin()) {
it->buf_ = buf;
it->len_ = len;
}
else {
it->buf_ = new u_int8_t[len];
if(!it->buf_)
AnytunError::throwErr() << "memory error";
it->len_ = len;
}
thread_result_t result;
result.buf_ = it->buf_;
result.len_ = it->len_;
result.sock_ = it->sock_;
boost::thread(boost::bind(&UDPPacketSource::recv_thread, this, result));
}
}
else {
thread_result_t result;
result.buf_ = last_recv_sock_.buf_;
result.len_ = last_recv_sock_.len_;
result.sock_ = last_recv_sock_.sock_;
boost::thread(boost::bind(&UDPPacketSource::recv_thread, this, result));
}
thread_result_sem_.down();
thread_result_t result;
{
Lock lock(thread_result_mutex_);
result = thread_result_queue_.front();
thread_result_queue_.pop();
}
last_recv_sock_.sock_ = result.sock_;
last_recv_sock_.buf_ = result.buf_;
last_recv_sock_.len_ = result.len_;
remote = result.remote_;
if(result.sock_ != sockets_.begin()->sock_) {
std::memcpy(buf, result.buf_, (len < result.len_) ? len : result.len_);
return (len < result.len_) ? len : result.len_;
}
return result.len_;
}
void UDPPacketSource::send(u_int8_t* buf, u_int32_t len, PacketSourceEndpoint remote)
{
std::list<sockets_element_t>::iterator it = sockets_.begin();
for(;it != sockets_.end(); ++it) {
if(it->sock_->local_endpoint().protocol() == remote.protocol()) {
it->sock_->send_to(boost::asio::buffer(buf, len), remote);
return;
}
}
cLog.msg(Log::PRIO_WARNING) << "no suitable socket found for remote endpoint protocol: " << remote;
}
|