1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
/*
* anytun
*
* The secure anycast tunneling protocol (satp) defines a protocol used
* for communication between any combination of unicast and anycast
* tunnel endpoints. It has less protocol overhead than IPSec in Tunnel
* mode and allows tunneling of every ETHER TYPE protocol (e.g.
* ethernet, ip, arp ...). satp directly includes cryptography and
* message authentication based on the methodes used by SRTP. It is
* intended to deliver a generic, scaleable and secure solution for
* tunneling and relaying of packets of any protocol.
*
*
* Copyright (C) 2007-2008 Othmar Gsenger, Erwin Nindl,
* Christian Pointner <satp@wirdorange.org>
*
* This file is part of Anytun.
*
* Anytun is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 3 as
* published by the Free Software Foundation.
*
* Anytun is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with anytun. If not, see <http://www.gnu.org/licenses/>.
*/
#include "threadUtils.hpp"
#include "datatypes.h"
#include <exception>
#include "networkAddress.h"
NetworkAddress::NetworkAddress()
{
network_address_type_=ipv4;
ipv4_address_.s_addr=0;
}
NetworkAddress::NetworkAddress(const NetworkAddress & ref) : mutex_(),ipv4_address_(ref.ipv4_address_),ipv6_address_(ref.ipv6_address_),ethernet_address_(ref.ethernet_address_),network_address_type_(ref.network_address_type_)
{
}
NetworkAddress::NetworkAddress(in6_addr ipv6_address)
{
network_address_type_=ipv6;
ipv6_address_ = ipv6_address;
}
NetworkAddress::NetworkAddress(in_addr ipv4_address)
{
network_address_type_=ipv4;
ipv4_address_ = ipv4_address;
}
NetworkAddress::NetworkAddress(uint64_t ethernet_address)
{
network_address_type_=ethernet;
ethernet_address_=ethernet_address;
}
NetworkAddress::~NetworkAddress()
{
}
NetworkAddress::NetworkAddress(const network_address_type_t type, const char * address )
{
setNetworkAddress( type, address);
}
void NetworkAddress::setNetworkAddress(const network_address_type_t type, const char * address )
{
if (type==ipv4)
{
inet_pton(AF_INET, address, &ipv4_address_);
} else if (type==ipv6) {
inet_pton(AF_INET6, address, &ipv6_address_);
} else if (type==ethernet) {
//TODO
} else {
//TODO
}
network_address_type_ = type;
}
void NetworkAddress::getNetworkAddress(const char *)
{
}
network_address_type_t NetworkAddress::getNetworkAddressType()
{
return network_address_type_;
}
std::string NetworkAddress::toString() const
{
if (network_address_type_==ipv4){
char buf[INET_ADDRSTRLEN];
if(!inet_ntop(AF_INET, &ipv4_address_, buf, sizeof(buf)))
return std::string("");
return std::string(buf);
}
else if (network_address_type_==ipv6) {
char buf[INET6_ADDRSTRLEN];
if(!inet_ntop(AF_INET6, &ipv6_address_, buf, sizeof(buf)))
return std::string("");
return std::string(buf);
}
else if (network_address_type_==ethernet) {
// TODO
}
return std::string("");
}
bool NetworkAddress::operator<(const NetworkAddress &right) const
{
if (network_address_type_!=right.network_address_type_)
return false;
if (network_address_type_==ipv4)
{
return (ipv4_address_.s_addr < right.ipv4_address_.s_addr);
} else if (network_address_type_==ipv6) {
for(int i=0;i<4;i++)
#if defined(__GNUC__) && defined(__linux__)
if (ipv6_address_.s6_addr32[i]<right.ipv6_address_.s6_addr32[i])
#elif defined(__GNUC__) && defined(__OpenBSD__)
if (ipv6_address_.__u6_addr.__u6_addr32[i]<right.ipv6_address_.__u6_addr.__u6_addr32[i])
#else
#error Target not supported
#endif
return true;
return false;
} else if (network_address_type_==ethernet) {
//TODO
} else {
//TODO
}
return false;
}
NetworkAddress NetworkAddress::operator<<(uint8_t shift) const
{
if (network_address_type_==ipv4)
{
in_addr new_v4_addr;
new_v4_addr.s_addr = ipv4_address_.s_addr << shift;
return (NetworkAddress(new_v4_addr));
} else if (network_address_type_==ipv6) {
in6_addr new_v6_addr;
for(int i=0;i<4;i++)
{
#if defined(__GNUC__) && defined(__linux__)
new_v6_addr.s6_addr32[i]=ipv6_address_.s6_addr32[i]<<1;
if (i<3 && ipv6_address_.s6_addr32[i+1] || uint32_t (0x80000000))
new_v6_addr.s6_addr32[i] &=1;
#elif defined(__GNUC__) && defined(__OpenBSD__)
new_v6_addr.__u6_addr.__u6_addr32[i]=ipv6_address_.__u6_addr.__u6_addr32[i]<<1;
if (i<3 && ipv6_address_.__u6_addr.__u6_addr32[i+1] || uint32_t (0x80000000))
new_v6_addr.__u6_addr.__u6_addr32[i] &=1;
#else
#error Target not supported
#endif
}
return NetworkAddress(new_v6_addr);
} else if (network_address_type_==ethernet) {
//TODO
} else {
//TODO
}
return false;
}
NetworkAddress NetworkAddress::operator&(const NetworkAddress &right) const
{
if (network_address_type_!=right.network_address_type_)
throw std::runtime_error("network_address_types did not match");
if (network_address_type_==ipv4)
{
in_addr new_v4_addr;
new_v4_addr.s_addr = ipv4_address_.s_addr & right.ipv4_address_.s_addr;
return (NetworkAddress(new_v4_addr));
} else if (network_address_type_==ipv6) {
in6_addr new_v6_addr;
for(int i=0;i<4;i++)
#if defined(__GNUC__) && defined(__linux__)
new_v6_addr.s6_addr32[i]=ipv6_address_.s6_addr32[i]&right.ipv6_address_.s6_addr32[i];
#elif defined(__GNUC__) && defined(__OpenBSD__)
new_v6_addr.__u6_addr.__u6_addr32[i]=ipv6_address_.__u6_addr.__u6_addr32[i]&right.ipv6_address_.__u6_addr.__u6_addr32[i];
#else
#error Target not supported
#endif
return NetworkAddress(new_v6_addr);
} else if (network_address_type_==ethernet) {
//TODO
} else {
//TODO
}
return false;
}
NetworkAddress NetworkAddress::operator&=(const NetworkAddress &right)
{
if (network_address_type_!=right.network_address_type_)
throw std::runtime_error("network_address_types did not match");
if (network_address_type_==ipv4)
{
ipv4_address_.s_addr &= right.ipv4_address_.s_addr;
return *this;
} else if (network_address_type_==ipv6) {
for(int i=0;i<4;i++)
#if defined(__GNUC__) && defined(__linux__)
ipv6_address_.s6_addr32[i]&=right.ipv6_address_.s6_addr32[i];
#elif defined(__GNUC__) && defined(__OpenBSD__)
ipv6_address_.__u6_addr.__u6_addr32[i]&=right.ipv6_address_.__u6_addr.__u6_addr32[i];
#else
#error Target not supported
#endif
return *this;
} else if (network_address_type_==ethernet) {
//TODO
} else {
//TODO
}
return false;
}
|