1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
/*
* anytun
*
* The secure anycast tunneling protocol (satp) defines a protocol used
* for communication between any combination of unicast and anycast
* tunnel endpoints. It has less protocol overhead than IPSec in Tunnel
* mode and allows tunneling of every ETHER TYPE protocol (e.g.
* ethernet, ip, arp ...). satp directly includes cryptography and
* message authentication based on the methodes used by SRTP. It is
* intended to deliver a generic, scaleable and secure solution for
* tunneling and relaying of packets of any protocol.
*
*
* Copyright (C) 2007-2008 Othmar Gsenger, Erwin Nindl,
* Christian Pointner <satp@wirdorange.org>
*
* This file is part of Anytun.
*
* Anytun is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 3 as
* published by the Free Software Foundation.
*
* Anytun is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with anytun. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _CIPHER_H_
#define _CIPHER_H_
#include "datatypes.h"
#include "buffer.h"
#include "encryptedPacket.h"
#include "plainPacket.h"
#include "keyDerivation.h"
#ifndef NOCRYPT
#ifndef USE_SSL_CRYPTO
#include <gcrypt.h>
#else
#include <openssl/aes.h>
#endif
#endif
class Cipher
{
public:
virtual ~Cipher() {};
void encrypt(KeyDerivation& kd, kd_dir dir, PlainPacket & in, EncryptedPacket & out, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux);
void decrypt(KeyDerivation& kd, kd_dir dir, EncryptedPacket & in, PlainPacket & out);
protected:
virtual u_int32_t cipher(KeyDerivation& kd, kd_dir dir, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux) = 0;
virtual u_int32_t decipher(KeyDerivation& kd, kd_dir dir, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux) = 0;
};
//****** NullCipher ******
class NullCipher : public Cipher
{
protected:
u_int32_t cipher(KeyDerivation& kd, kd_dir dir, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux);
u_int32_t decipher(KeyDerivation& kd, kd_dir dir, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux);
};
#ifndef NOCRYPT
//****** AesIcmCipher ******
class AesIcmCipher : public Cipher
{
public:
AesIcmCipher();
AesIcmCipher(u_int16_t key_length);
~AesIcmCipher();
static const u_int16_t DEFAULT_KEY_LENGTH = 128;
static const u_int16_t CTR_LENGTH = 16;
static const u_int16_t SALT_LENGTH = 14;
protected:
u_int32_t cipher(KeyDerivation& kd, kd_dir dir, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux);
u_int32_t decipher(KeyDerivation& kd, kd_dir dir, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux);
private:
void init(u_int16_t key_length = DEFAULT_KEY_LENGTH);
void calcCtr(KeyDerivation& kd, kd_dir dir, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux);
void calc(KeyDerivation& kd, kd_dir dir, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux);
#ifndef USE_SSL_CRYPTO
gcry_cipher_hd_t handle_;
#else
AES_KEY aes_key_;
u_int8_t ecount_buf_[AES_BLOCK_SIZE];
#endif
Buffer key_;
Buffer salt_;
union __attribute__((__packed__)) cipher_aesctr_ctr_union {
u_int8_t buf_[CTR_LENGTH];
struct __attribute__ ((__packed__)) {
u_int8_t buf_[SALT_LENGTH];
u_int16_t zero_;
} salt_;
struct __attribute__((__packed__)) {
u_int8_t fill_[SALT_LENGTH - sizeof(mux_t) - sizeof(sender_id_t) - 2 - sizeof(seq_nr_t)];
mux_t mux_;
sender_id_t sender_id_;
u_int8_t empty_[2];
seq_nr_t seq_nr_;
u_int16_t zero_;
} params_;
} ctr_;
};
#endif
#endif
|