1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
/*
* anytun
*
* The secure anycast tunneling protocol (satp) defines a protocol used
* for communication between any combination of unicast and anycast
* tunnel endpoints. It has less protocol overhead than IPSec in Tunnel
* mode and allows tunneling of every ETHER TYPE protocol (e.g.
* ethernet, ip, arp ...). satp directly includes cryptography and
* message authentication based on the methods used by SRTP. It is
* intended to deliver a generic, scaleable and secure solution for
* tunneling and relaying of packets of any protocol.
*
*
* Copyright (C) 2007-2009 Othmar Gsenger, Erwin Nindl,
* Christian Pointner <satp@wirdorange.org>
*
* This file is part of Anytun.
*
* Anytun is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* Anytun is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with anytun. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdexcept>
#include <iostream>
#include <string>
#include <cstdio>
#include <cstring>
#include "endian.h"
#include "cipher.h"
#if defined(USE_NETTLE)
#include <nettle/ctr.h>
#endif
#include "log.h"
#include "anytunError.h"
void Cipher::encrypt(KeyDerivation& kd, PlainPacket& in, EncryptedPacket& out, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux)
{
uint32_t len = cipher(kd, in, in.getLength(), out.getPayload(), out.getPayloadLength(), seq_nr, sender_id, mux);
out.setSenderId(sender_id);
out.setSeqNr(seq_nr);
out.setMux(mux);
out.setPayloadLength(len);
}
void Cipher::decrypt(KeyDerivation& kd, EncryptedPacket& in, PlainPacket& out)
{
uint32_t len = decipher(kd, in.getPayload() , in.getPayloadLength(), out, out.getLength(), in.getSeqNr(), in.getSenderId(), in.getMux());
out.setLength(len);
}
//******* NullCipher *******
uint32_t NullCipher::cipher(KeyDerivation& kd, uint8_t* in, uint32_t ilen, uint8_t* out, uint32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux)
{
std::memcpy(out, in, (ilen < olen) ? ilen : olen);
return (ilen < olen) ? ilen : olen;
}
uint32_t NullCipher::decipher(KeyDerivation& kd, uint8_t* in, uint32_t ilen, uint8_t* out, uint32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux)
{
std::memcpy(out, in, (ilen < olen) ? ilen : olen);
return (ilen < olen) ? ilen : olen;
}
#ifndef NO_CRYPT
//****** AesIcmCipher ******
AesIcmCipher::AesIcmCipher(kd_dir_t d) : Cipher(d), key_(uint32_t(DEFAULT_KEY_LENGTH/8)), salt_(uint32_t(SALT_LENGTH))
{
init();
}
AesIcmCipher::AesIcmCipher(kd_dir_t d, uint16_t key_length) : Cipher(d), key_(uint32_t(key_length/8)), salt_(uint32_t(SALT_LENGTH))
{
init(key_length);
}
void AesIcmCipher::init(uint16_t key_length)
{
#if defined(USE_SSL_CRYPTO)
// nothing here
#elif defined(USE_NETTLE)
// nothing here
#else // USE_GCRYPT is the default
handle_ = NULL;
int algo;
switch(key_length) {
case 128:
algo = GCRY_CIPHER_AES128;
break;
case 192:
algo = GCRY_CIPHER_AES192;
break;
case 256:
algo = GCRY_CIPHER_AES256;
break;
default: {
cLog.msg(Log::PRIO_ERROR) << "AesIcmCipher::AesIcmCipher: cipher key length of " << key_length << " Bits is not supported";
return;
}
}
gcry_error_t err = gcry_cipher_open(&handle_, algo, GCRY_CIPHER_MODE_CTR, 0);
if(err) {
cLog.msg(Log::PRIO_ERROR) << "AesIcmCipher::AesIcmCipher: Failed to open cipher" << AnytunGpgError(err);
}
#endif
}
AesIcmCipher::~AesIcmCipher()
{
#if defined(USE_SSL_CRYPTO)
// nothing here
#elif defined(USE_NETTLE)
// nothing here
#else // USE_GCRYPT is the default
if(handle_) {
gcry_cipher_close(handle_);
}
#endif
}
uint32_t AesIcmCipher::cipher(KeyDerivation& kd, uint8_t* in, uint32_t ilen, uint8_t* out, uint32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux)
{
calc(kd, in, ilen, out, olen, seq_nr, sender_id, mux);
return (ilen < olen) ? ilen : olen;
}
uint32_t AesIcmCipher::decipher(KeyDerivation& kd, uint8_t* in, uint32_t ilen, uint8_t* out, uint32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux)
{
calc(kd, in, ilen, out, olen, seq_nr, sender_id, mux);
return (ilen < olen) ? ilen : olen;
}
void AesIcmCipher::calcCtr(KeyDerivation& kd, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux)
{
kd.generate(dir_, LABEL_SALT, seq_nr, salt_);
std::memcpy(ctr_.salt_.buf_, salt_.getBuf(), SALT_LENGTH);
ctr_.salt_.zero_ = 0;
ctr_.params_.mux_ ^= MUX_T_HTON(mux);
ctr_.params_.sender_id_ ^= SENDER_ID_T_HTON(sender_id);
ctr_.params_.seq_nr_ ^= SEQ_NR_T_HTON(seq_nr);
return;
}
void AesIcmCipher::calc(KeyDerivation& kd, uint8_t* in, uint32_t ilen, uint8_t* out, uint32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux)
{
#if defined(USE_GCRYPT)
if(!handle_) {
return;
}
#endif
kd.generate(dir_, LABEL_ENC, seq_nr, key_);
#if defined(USE_SSL_CRYPTO)
int ret = AES_set_encrypt_key(key_.getBuf(), key_.getLength()*8, &aes_key_);
if(ret) {
cLog.msg(Log::PRIO_ERROR) << "AesIcmCipher: Failed to set cipher ssl key (code: " << ret << ")";
return;
}
#elif defined(USE_NETTLE)
aes_set_encrypt_key(&ctx_, key_.getLength(), key_.getBuf());
#else // USE_GCRYPT is the default
gcry_error_t err = gcry_cipher_setkey(handle_, key_.getBuf(), key_.getLength());
if(err) {
cLog.msg(Log::PRIO_ERROR) << "AesIcmCipher: Failed to set cipher key: " << AnytunGpgError(err);
return;
}
#endif
calcCtr(kd, seq_nr, sender_id, mux);
#if defined(USE_SSL_CRYPTO)
if(CTR_LENGTH != AES_BLOCK_SIZE) {
cLog.msg(Log::PRIO_ERROR) << "AesIcmCipher: Failed to set cipher CTR: size doesn't fit";
return;
}
unsigned int num = 0;
std::memset(ecount_buf_, 0, AES_BLOCK_SIZE);
AES_ctr128_encrypt(in, out, (ilen < olen) ? ilen : olen, &aes_key_, ctr_.buf_, ecount_buf_, &num);
#elif defined(USE_NETTLE)
if(CTR_LENGTH != AES_BLOCK_SIZE) {
cLog.msg(Log::PRIO_ERROR) << "AesIcmCipher: Failed to set cipher CTR: size doesn't fit";
return;
}
ctr_crypt(&ctx_, (nettle_crypt_func *)(aes_encrypt), AES_BLOCK_SIZE, ctr_.buf_, (ilen < olen) ? ilen : olen, out, in);
#else // USE_GCRYPT is the default
err = gcry_cipher_setctr(handle_, ctr_.buf_, CTR_LENGTH);
if(err) {
cLog.msg(Log::PRIO_ERROR) << "AesIcmCipher: Failed to set cipher CTR: " << AnytunGpgError(err);
return;
}
err = gcry_cipher_encrypt(handle_, out, olen, in, ilen);
if(err) {
cLog.msg(Log::PRIO_ERROR) << "AesIcmCipher: Failed to de/encrypt packet: " << AnytunGpgError(err);
return;
}
#endif
}
#endif
|