1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
/*
* anytun
*
* The secure anycast tunneling protocol (satp) defines a protocol used
* for communication between any combination of unicast and anycast
* tunnel endpoints. It has less protocol overhead than IPSec in Tunnel
* mode and allows tunneling of every ETHER TYPE protocol (e.g.
* ethernet, ip, arp ...). satp directly includes cryptography and
* message authentication based on the methodes used by SRTP. It is
* intended to deliver a generic, scaleable and secure solution for
* tunneling and relaying of packets of any protocol.
*
*
* Copyright (C) 2007 anytun.org <satp@wirdorange.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (see the file COPYING included with this
* distribution); if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdexcept>
#include <vector>
//#include "datatypes.h"
#include "cypher.h"
extern "C" {
#include <srtp/crypto_kernel.h>
}
void Cypher::cypher(Buffer& buf, seq_nr_t seq_nr, sender_id_t sender_id)
{
Buffer stream = getBitStream(buf.getLength(), seq_nr, sender_id);
exor(buf, stream);
}
void Cypher::exor(Buffer& buf, const Buffer& bit_stream)
{
try
{
for(u_int32_t i; i<buf.getLength(); ++i)
buf[i] ^= bit_stream[i];
}
catch(std::out_of_range& o) {}
}
Buffer NullCypher::getBitStream(u_int32_t length, seq_nr_t seq_nr, sender_id_t sender_id)
{
Buffer buf(length);
for(u_int32_t i; i<length; ++i)
buf[i] = 0;
return buf;
}
void AesIcmCypher::cypher(Buffer& buf, seq_nr_t seq_nr, sender_id_t sender_id)
{
}
Buffer AesIcmCypher::getBitStream(u_int32_t length, seq_nr_t seq_nr, sender_id_t sender_id)
{
Buffer buf(length);
extern cipher_type_t aes_icm;
err_status_t status;
cipher_t* cipher = NULL;
uint8_t key[20] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13
};
v128_t iv;
v128_set_to_zero(&iv);
// allocate cipher
status = cipher_type_alloc(&aes_icm, &cipher, 30);
if(status)
return buf;
// init cipher
status = cipher_init(cipher, key, direction_any);
if(status)
return buf;
//set iv
// where the 128-bit integer value IV SHALL be defined by the SSRC, the
// SRTP packet index i, and the SRTP session salting key k_s, as below.
//
// IV = (k_s * 2^16) XOR (SSRC * 2^64) XOR (i * 2^16)
// sizeof(k_s) = 112, random
iv.v32[0] ^= 0;
iv.v32[1] ^= sender_id;
iv.v32[2] ^= (seq_nr >> 16);
iv.v32[3] ^= (seq_nr << 16);
status = cipher_set_iv(cipher, &iv);
status = cipher_output(cipher, buf, length);
status = cipher_dealloc(cipher);
return buf;
}
|