/* * anytun * * The secure anycast tunneling protocol (satp) defines a protocol used * for communication between any combination of unicast and anycast * tunnel endpoints. It has less protocol overhead than IPSec in Tunnel * mode and allows tunneling of every ETHER TYPE protocol (e.g. * ethernet, ip, arp ...). satp directly includes cryptography and * message authentication based on the methodes used by SRTP. It is * intended to deliver a generic, scaleable and secure solution for * tunneling and relaying of packets of any protocol. * * * Copyright (C) 2007-2008 Othmar Gsenger, Erwin Nindl, * Christian Pointner * * This file is part of Anytun. * * Anytun is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * Anytun is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with anytun. If not, see . */ #ifndef _CIPHER_H_ #define _CIPHER_H_ #include "datatypes.h" #include "buffer.h" #include "encryptedPacket.h" #include "plainPacket.h" #include "keyDerivation.h" #ifndef NO_CRYPT #ifndef USE_SSL_CRYPTO #include #else #include #endif #endif class Cipher { public: Cipher() : dir_(KD_INBOUND) {}; Cipher(kd_dir_t d) : dir_(d) {}; virtual ~Cipher() {}; void encrypt(KeyDerivation& kd, PlainPacket & in, EncryptedPacket & out, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux); void decrypt(KeyDerivation& kd, EncryptedPacket & in, PlainPacket & out); protected: virtual u_int32_t cipher(KeyDerivation& kd, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux) = 0; virtual u_int32_t decipher(KeyDerivation& kd, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux) = 0; kd_dir_t dir_; }; //****** NullCipher ****** class NullCipher : public Cipher { protected: u_int32_t cipher(KeyDerivation& kd, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux); u_int32_t decipher(KeyDerivation& kd, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux); }; #ifndef NO_CRYPT //****** AesIcmCipher ****** class AesIcmCipher : public Cipher { public: AesIcmCipher(kd_dir_t d); AesIcmCipher(kd_dir_t d, u_int16_t key_length); ~AesIcmCipher(); static const u_int16_t DEFAULT_KEY_LENGTH = 128; static const u_int16_t CTR_LENGTH = 16; static const u_int16_t SALT_LENGTH = 14; protected: u_int32_t cipher(KeyDerivation& kd, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux); u_int32_t decipher(KeyDerivation& kd, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux); private: void init(u_int16_t key_length = DEFAULT_KEY_LENGTH); void calcCtr(KeyDerivation& kd, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux); void calc(KeyDerivation& kd, u_int8_t* in, u_int32_t ilen, u_int8_t* out, u_int32_t olen, seq_nr_t seq_nr, sender_id_t sender_id, mux_t mux); #ifndef USE_SSL_CRYPTO gcry_cipher_hd_t handle_; #else AES_KEY aes_key_; u_int8_t ecount_buf_[AES_BLOCK_SIZE]; #endif Buffer key_; Buffer salt_; #ifdef _MSC_VER #pragma pack(push, 1) #endif union ATTR_PACKED cipher_aesctr_ctr_union { u_int8_t buf_[CTR_LENGTH]; struct ATTR_PACKED { u_int8_t buf_[SALT_LENGTH]; u_int16_t zero_; } salt_; struct ATTR_PACKED { u_int8_t fill_[SALT_LENGTH - sizeof(mux_t) - sizeof(sender_id_t) - 2*sizeof(u_int8_t) - sizeof(seq_nr_t)]; mux_t mux_; sender_id_t sender_id_; u_int8_t empty_[2]; seq_nr_t seq_nr_; u_int16_t zero_; } params_; } ctr_; #ifdef _MSC_VER #pragma pack(pop) #endif }; #endif #endif