/* * anytun * * The secure anycast tunneling protocol (satp) defines a protocol used * for communication between any combination of unicast and anycast * tunnel endpoints. It has less protocol overhead than IPSec in Tunnel * mode and allows tunneling of every ETHER TYPE protocol (e.g. * ethernet, ip, arp ...). satp directly includes cryptography and * message authentication based on the methodes used by SRTP. It is * intended to deliver a generic, scaleable and secure solution for * tunneling and relaying of packets of any protocol. * * * Copyright (C) 2007 anytun.org * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program (see the file COPYING included with this * distribution); if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "threadUtils.hpp" #include "datatypes.h" #include #include "networkAddress.h" NetworkAddress::NetworkAddress() { network_address_type_=ipv4; ipv4_address_.s_addr=0; } NetworkAddress::NetworkAddress(const NetworkAddress & ref) : mutex_(),ipv4_address_(ref.ipv4_address_),ipv6_address_(ref.ipv6_address_),ethernet_address_(ref.ethernet_address_),network_address_type_(ref.network_address_type_) { } NetworkAddress::NetworkAddress(in6_addr ipv6_address) { network_address_type_=ipv6; ipv6_address_ = ipv6_address; } NetworkAddress::NetworkAddress(in_addr ipv4_address) { network_address_type_=ipv4; ipv4_address_ = ipv4_address; } NetworkAddress::NetworkAddress(uint64_t ethernet_address) { network_address_type_=ethernet; ethernet_address_=ethernet_address; } NetworkAddress::~NetworkAddress() { } NetworkAddress::NetworkAddress(const network_address_type_t type, const char * address ) { setNetworkAddress( type, address); } void NetworkAddress::setNetworkAddress(const network_address_type_t type, const char * address ) { if (type==ipv4) { inet_pton(AF_INET, address, &ipv4_address_); } else if (type==ipv6) { inet_pton(AF_INET6, address, &ipv6_address_); } else if (type==ethernet) { //TODO } else { //TODO } network_address_type_ = type; } void NetworkAddress::getNetworkAddress(const char *) { } network_address_type_t NetworkAddress::getNetworkAddressType() { return network_address_type_; } std::string NetworkAddress::toString() const { if (network_address_type_==ipv4){ char buf[INET_ADDRSTRLEN]; if(!inet_ntop(AF_INET, &ipv4_address_, buf, sizeof(buf))) return std::string(""); return std::string(buf); } else if (network_address_type_==ipv6) { char buf[INET6_ADDRSTRLEN]; if(!inet_ntop(AF_INET6, &ipv6_address_, buf, sizeof(buf))) return std::string(""); return std::string(buf); } else if (network_address_type_==ethernet) { // TODO } return std::string(""); } bool NetworkAddress::operator<(const NetworkAddress &right) const { if (network_address_type_!=right.network_address_type_) return false; if (network_address_type_==ipv4) { return (ipv4_address_.s_addr < right.ipv4_address_.s_addr); } else if (network_address_type_==ipv6) { for(int i=0;i<4;i++) if (ipv6_address_.s6_addr32[i]