/* * anytun * * The secure anycast tunneling protocol (satp) defines a protocol used * for communication between any combination of unicast and anycast * tunnel endpoints. It has less protocol overhead than IPSec in Tunnel * mode and allows tunneling of every ETHER TYPE protocol (e.g. * ethernet, ip, arp ...). satp directly includes cryptography and * message authentication based on the methodes used by SRTP. It is * intended to deliver a generic, scaleable and secure solution for * tunneling and relaying of packets of any protocol. * * * Copyright (C) 2007 anytun.org * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program (see the file COPYING included with this * distribution); if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include "cypher.h" #include "keyDerivation.h" #include "mpi.h" #include "log.h" void Cypher::cypher(Buffer& buf, seq_nr_t seq_nr, sender_id_t sender_id) { Buffer stream = getBitStream(buf.getLength(), seq_nr, sender_id); exor(buf, stream); } void Cypher::exor(Buffer& buf, const Buffer& bit_stream) { try { for(u_int32_t i; i= " << MIN_GCRYPT_VERSION; return; } // do NOT allocate a pool of secure memory! // this is NOT thread safe! // /* Allocate a pool of secure memory. This also drops priviliges // on some systems. */ // err = gcry_control(GCRYCTL_INIT_SECMEM, GCRYPT_SEC_MEM, 0); // if( err ) { // std::cerr << "Failed to allocate " << GCRYPT_SEC_MEM << "bytes of secure memory: "; // std::cerr << gpg_strerror( err ) << std::endl; // return; // } /* Tell Libgcrypt that initialization has completed. */ err = gcry_control(GCRYCTL_INITIALIZATION_FINISHED); if( err ) { cLog.msg(Log::PRIO_CRIT) << "AesIcmCypher::AesIcmCypher: Failed to finish the initialization of libgcrypt: " << gpg_strerror( err ); return; } else { cLog.msg(Log::PRIO_NOTICE) << "AesIcmCypher::AesIcmCypher: libgcrypt init finished"; } } gcry_cipher_open( &cipher_, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_CTR, 0 ); } AesIcmCypher::~AesIcmCypher() { gcry_cipher_close( cipher_ ); } void AesIcmCypher::setKey(Buffer key) { gcry_error_t err; // FIXXME: hardcoded keysize err = gcry_cipher_setkey( cipher_, key.getBuf(), 16 ); if( err ) cLog.msg(Log::PRIO_ERR) << "AesIcmCypher::setKey: Failed to set cipher key: " << gpg_strerror( err ); } void AesIcmCypher::setSalt(Buffer salt) { salt_ = salt; } Buffer AesIcmCypher::getBitStream(u_int32_t length, seq_nr_t seq_nr, sender_id_t sender_id) { gcry_error_t err; Buffer buf(length); // // set IV // // where the 128-bit integer value IV SHALL be defined by the SSRC, the // // SRTP packet index i, and the SRTP session salting key k_s, as below. // // // // IV = (k_s * 2^16) XOR (SSRC * 2^64) XOR (i * 2^16) // // sizeof(k_s) = 112 bit, random Mpi iv(128); Mpi salt = Mpi(salt_.getBuf(), salt_.getLength()); Mpi sid = sender_id; Mpi seq = seq_nr; iv = salt.mul2exp(16) ^ sid.mul2exp(64) ^ seq.mul2exp(16); err = gcry_cipher_setiv( cipher_, iv.getBuf(16), 16 ); if( err ) { cLog.msg(Log::PRIO_ERR) << "AesIcmCypher: Failed to set cipher IV: " << gpg_strerror( err ); return Buffer(0); } err = gcry_cipher_reset( cipher_ ); if( err ) { cLog.msg(Log::PRIO_ERR) << "AesIcmCypher: Failed to reset cipher: " << gpg_strerror( err ); return Buffer(0); } err = gcry_cipher_encrypt( cipher_, buf, buf.getLength(), 0, 0 ); if( err ) { cLog.msg(Log::PRIO_ERR) << "AesIcmCypher: Failed to generate cipher bitstream: " << gpg_strerror( err ); return Buffer(0); } return buf; }