diff options
author | Othmar Gsenger <otti@anytun.org> | 2007-12-27 11:13:13 +0000 |
---|---|---|
committer | Othmar Gsenger <otti@anytun.org> | 2007-12-27 11:13:13 +0000 |
commit | 6dc4f1912caf7f01f4b977ff8aaa50be61db2aba (patch) | |
tree | d7a281c430052e04156265d9ab3108c631360a5e /keyexchange/isakmpd-20041012/math_2n.c | |
parent | removed old isakmpd (diff) |
adden new isakmpd
Diffstat (limited to 'keyexchange/isakmpd-20041012/math_2n.c')
-rw-r--r-- | keyexchange/isakmpd-20041012/math_2n.c | 1107 |
1 files changed, 1107 insertions, 0 deletions
diff --git a/keyexchange/isakmpd-20041012/math_2n.c b/keyexchange/isakmpd-20041012/math_2n.c new file mode 100644 index 0000000..f8828ef --- /dev/null +++ b/keyexchange/isakmpd-20041012/math_2n.c @@ -0,0 +1,1107 @@ +/* $OpenBSD: math_2n.c,v 1.16 2004/06/14 09:55:41 ho Exp $ */ +/* $EOM: math_2n.c,v 1.15 1999/04/20 09:23:30 niklas Exp $ */ + +/* + * Copyright (c) 1998 Niels Provos. All rights reserved. + * Copyright (c) 1999 Niklas Hallqvist. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +/* + * This code was written under funding by Ericsson Radio Systems. + */ + +/* + * B2N is a module for doing arithmetic on the Field GF(2**n) which is + * isomorph to ring of polynomials GF(2)[x]/p(x) where p(x) is an + * irreduciable polynomial over GF(2)[x] with grade n. + * + * First we need functions which operate on GF(2)[x], operation + * on GF(2)[x]/p(x) can be done as for Z_p then. + */ + +#include <stdlib.h> +#include <string.h> +#include <stdio.h> + +#include "sysdep.h" + +#include "math_2n.h" +#include "util.h" + +static u_int8_t hex2int(char); + +static char int2hex[] = "0123456789abcdef"; +CHUNK_TYPE b2n_mask[CHUNK_BITS] = { + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, +#if CHUNK_BITS > 8 + 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, +#if CHUNK_BITS > 16 + 0x00010000, 0x00020000, 0x00040000, 0x00080000, + 0x00100000, 0x00200000, 0x00400000, 0x00800000, + 0x01000000, 0x02000000, 0x04000000, 0x08000000, + 0x10000000, 0x20000000, 0x40000000, 0x80000000, +#endif +#endif +}; + +/* Convert a hex character to its integer value. */ +static u_int8_t +hex2int(char c) +{ + if (c <= '9') + return c - '0'; + if (c <= 'f') + return 10 + c - 'a'; + + return 0; +} + +int +b2n_random(b2n_ptr n, u_int32_t bits) +{ + if (b2n_resize(n, (CHUNK_MASK + bits) >> CHUNK_SHIFTS)) + return -1; + + getrandom((u_int8_t *) n->limp, CHUNK_BYTES * n->chunks); + + /* Get the number of significant bits right */ + if (bits & CHUNK_MASK) { + CHUNK_TYPE m = + (((1 << ((bits & CHUNK_MASK) - 1)) - 1) << 1) | 1; + n->limp[n->chunks - 1] &= m; + } + n->dirty = 1; + return 0; +} + +/* b2n management functions */ + +void +b2n_init(b2n_ptr n) +{ + n->chunks = 0; + n->limp = 0; +} + +void +b2n_clear(b2n_ptr n) +{ + if (n->limp) + free(n->limp); +} + +int +b2n_resize(b2n_ptr n, unsigned int chunks) +{ + size_t old = n->chunks; + size_t size; + CHUNK_TYPE *new; + + if (chunks == 0) + chunks = 1; + + if (chunks == old) + return 0; + + size = CHUNK_BYTES * chunks; + + new = realloc(n->limp, size); + if (!new) + return -1; + + n->limp = new; + n->chunks = chunks; + n->bits = chunks << CHUNK_SHIFTS; + n->dirty = 1; + + if (chunks > old) + memset(n->limp + old, 0, size - CHUNK_BYTES * old); + + return 0; +} + +/* Simple assignment functions. */ + +int +b2n_set(b2n_ptr d, b2n_ptr s) +{ + if (d == s) + return 0; + + b2n_sigbit(s); + if (b2n_resize(d, (CHUNK_MASK + s->bits) >> CHUNK_SHIFTS)) + return -1; + memcpy(d->limp, s->limp, CHUNK_BYTES * d->chunks); + d->bits = s->bits; + d->dirty = s->dirty; + return 0; +} + +int +b2n_set_null(b2n_ptr n) +{ + if (b2n_resize(n, 1)) + return -1; + n->limp[0] = n->bits = n->dirty = 0; + return 0; +} + +int +b2n_set_ui(b2n_ptr n, unsigned int val) +{ +#if CHUNK_BITS < 32 + int i, chunks; + + chunks = (CHUNK_BYTES - 1 + sizeof(val)) / CHUNK_BYTES; + + if (b2n_resize(n, chunks)) + return -1; + + for (i = 0; i < chunks; i++) { + n->limp[i] = val & CHUNK_BMASK; + val >>= CHUNK_BITS; + } +#else + if (b2n_resize(n, 1)) + return -1; + n->limp[0] = val; +#endif + n->dirty = 1; + return 0; +} + +/* XXX This one only takes hex at the moment. */ +int +b2n_set_str(b2n_ptr n, char *str) +{ + int i, j, w, len, chunks; + CHUNK_TYPE tmp; + + if (strncasecmp(str, "0x", 2)) + return -1; + + /* Make the hex string even lengthed */ + len = strlen(str) - 2; + if (len & 1) { + len++; + str++; + } else + str += 2; + + len /= 2; + + chunks = (CHUNK_BYTES - 1 + len) / CHUNK_BYTES; + if (b2n_resize(n, chunks)) + return -1; + memset(n->limp, 0, CHUNK_BYTES * n->chunks); + + for (w = 0, i = 0; i < chunks; i++) { + tmp = 0; + for (j = (i == 0 ? + ((len - 1) % CHUNK_BYTES) + 1 : CHUNK_BYTES); + j > 0; j--) { + tmp <<= 8; + tmp |= (hex2int(str[w]) << 4) | hex2int(str[w + 1]); + w += 2; + } + n->limp[chunks - 1 - i] = tmp; + } + + n->dirty = 1; + return 0; +} + +/* Output function, mainly for debugging purposes. */ +void +b2n_print(b2n_ptr n) +{ + int i, j, w, flag = 0; + int left; + char buffer[2 * CHUNK_BYTES]; + CHUNK_TYPE tmp; + + left = ((((7 + b2n_sigbit(n)) >> 3) - 1) % CHUNK_BYTES) + 1; + printf("0x"); + for (i = 0; i < n->chunks; i++) { + tmp = n->limp[n->chunks - 1 - i]; + memset(buffer, '0', sizeof(buffer)); + for (w = 0, j = (i == 0 ? left : CHUNK_BYTES); j > 0; j--) { + buffer[w++] = int2hex[(tmp >> 4) & 0xf]; + buffer[w++] = int2hex[tmp & 0xf]; + tmp >>= 8; + } + + for (j = (i == 0 ? left - 1 : CHUNK_BYTES - 1); j >= 0; j--) + if (flag || (i == n->chunks - 1 && j == 0) || + buffer[2 * j] != '0' || buffer[2 * j + 1] != '0') { + putchar(buffer[2 * j]); + putchar(buffer[2 * j + 1]); + flag = 1; + } + } + printf("\n"); +} + +int +b2n_snprint(char *buf, size_t sz, b2n_ptr n) +{ + int i, j, w, flag = 0; + size_t k; + int left; + char buffer[2 * CHUNK_BYTES]; + CHUNK_TYPE tmp; + + left = ((((7 + b2n_sigbit(n)) >> 3) - 1) % CHUNK_BYTES) + 1; + + k = strlcpy(buf, "0x", sz); + for (i = 0; i < n->chunks && k < sz - 1; i++) { + tmp = n->limp[n->chunks - 1 - i]; + memset(buffer, '0', sizeof(buffer)); + for (w = 0, j = (i == 0 ? left : CHUNK_BYTES); j > 0; j--) { + buffer[w++] = int2hex[(tmp >> 4) & 0xf]; + buffer[w++] = int2hex[tmp & 0xf]; + tmp >>= 8; + } + + for (j = (i == 0 ? left - 1 : CHUNK_BYTES - 1); j >= 0 + && k < sz - 3; j--) + if (flag || (i == n->chunks - 1 && j == 0) || + buffer[2 * j] != '0' || buffer[2 * j + 1] != '0') { + buf[k++] = buffer[2 * j]; + buf[k++] = buffer[2 * j + 1]; + flag = 1; + } + } + + buf[k++] = 0; + return k; +} + +/* Arithmetic functions. */ + +u_int32_t +b2n_sigbit(b2n_ptr n) +{ + int i, j; + + if (!n->dirty) + return n->bits; + + for (i = n->chunks - 1; i > 0; i--) + if (n->limp[i]) + break; + + if (!n->limp[i]) + return 0; + + for (j = CHUNK_MASK; j > 0; j--) + if (n->limp[i] & b2n_mask[j]) + break; + + n->bits = (i << CHUNK_SHIFTS) + j + 1; + n->dirty = 0; + return n->bits; +} + +/* Addition on GF(2)[x] is nice, its just an XOR. */ +int +b2n_add(b2n_ptr d, b2n_ptr a, b2n_ptr b) +{ + int i; + b2n_ptr bmin, bmax; + + if (!b2n_cmp_null(a)) + return b2n_set(d, b); + + if (!b2n_cmp_null(b)) + return b2n_set(d, a); + + bmin = B2N_MIN(a, b); + bmax = B2N_MAX(a, b); + + if (b2n_resize(d, bmax->chunks)) + return -1; + + for (i = 0; i < bmin->chunks; i++) + d->limp[i] = bmax->limp[i] ^ bmin->limp[i]; + + /* + * If d is not bmax, we have to copy the rest of the bytes, and also + * need to adjust to number of relevant bits. + */ + if (d != bmax) { + for (; i < bmax->chunks; i++) + d->limp[i] = bmax->limp[i]; + + d->bits = bmax->bits; + } + /* + * Help to converse memory. When the result of the addition is zero + * truncate the used amount of memory. + */ + if (d != bmax && !b2n_cmp_null(d)) + return b2n_set_null(d); + else + d->dirty = 1; + return 0; +} + +/* Compare two polynomials. */ +int +b2n_cmp(b2n_ptr n, b2n_ptr m) +{ + int sn, sm; + int i; + + sn = b2n_sigbit(n); + sm = b2n_sigbit(m); + + if (sn > sm) + return 1; + if (sn < sm) + return -1; + + for (i = n->chunks - 1; i >= 0; i--) + if (n->limp[i] > m->limp[i]) + return 1; + else if (n->limp[i] < m->limp[i]) + return -1; + + return 0; +} + +int +b2n_cmp_null(b2n_ptr a) +{ + int i = 0; + + do { + if (a->limp[i]) + return 1; + } + while (++i < a->chunks); + + return 0; +} + +/* Left shift, needed for polynomial multiplication. */ +int +b2n_lshift(b2n_ptr d, b2n_ptr n, unsigned int s) +{ + int i, maj, min, chunks; + u_int16_t bits = b2n_sigbit(n), add; + CHUNK_TYPE *p, *op; + + if (!s) + return b2n_set(d, n); + + maj = s >> CHUNK_SHIFTS; + min = s & CHUNK_MASK; + + add = (!(bits & CHUNK_MASK) || + ((bits & CHUNK_MASK) + min) > CHUNK_MASK) ? 1 : 0; + chunks = n->chunks; + if (b2n_resize(d, chunks + maj + add)) + return -1; + memmove(d->limp + maj, n->limp, CHUNK_BYTES * chunks); + + if (maj) + memset(d->limp, 0, CHUNK_BYTES * maj); + if (add) + d->limp[d->chunks - 1] = 0; + + /* If !min there are no bit shifts, we are done */ + if (!min) + return 0; + + op = p = &d->limp[d->chunks - 1]; + for (i = d->chunks - 2; i >= maj; i--) { + op--; + *p = (*p << min) | (*op >> (CHUNK_BITS - min)); + p--; + } + *p <<= min; + + d->dirty = 0; + d->bits = bits + (maj << CHUNK_SHIFTS) + min; + return 0; +} + +/* Right shift, needed for polynomial division. */ +int +b2n_rshift(b2n_ptr d, b2n_ptr n, unsigned int s) +{ + int maj, min, size = n->chunks, newsize; + b2n_ptr tmp; + + if (!s) + return b2n_set(d, n); + + maj = s >> CHUNK_SHIFTS; + + newsize = size - maj; + + if (size < maj) + return b2n_set_null(d); + + min = (CHUNK_BITS - (s & CHUNK_MASK)) & CHUNK_MASK; + if (min) { + if ((b2n_sigbit(n) & CHUNK_MASK) > (u_int32_t) min) + newsize++; + + if (b2n_lshift(d, n, min)) + return -1; + tmp = d; + } else + tmp = n; + + memmove(d->limp, tmp->limp + maj + (min ? 1 : 0), + CHUNK_BYTES * newsize); + if (b2n_resize(d, newsize)) + return -1; + + d->bits = tmp->bits - ((maj + (min ? 1 : 0)) << CHUNK_SHIFTS); + return 0; +} + +/* Normal polynomial multiplication. */ +int +b2n_mul(b2n_ptr d, b2n_ptr n, b2n_ptr m) +{ + int i, j; + b2n_t tmp, tmp2; + + if (!b2n_cmp_null(m) || !b2n_cmp_null(n)) + return b2n_set_null(d); + + if (b2n_sigbit(m) == 1) + return b2n_set(d, n); + + if (b2n_sigbit(n) == 1) + return b2n_set(d, m); + + b2n_init(tmp); + b2n_init(tmp2); + + if (b2n_set(tmp, B2N_MAX(n, m))) + goto fail; + if (b2n_set(tmp2, B2N_MIN(n, m))) + goto fail; + + if (b2n_set_null(d)) + goto fail; + + for (i = 0; i < tmp2->chunks; i++) + if (tmp2->limp[i]) + for (j = 0; j < CHUNK_BITS; j++) { + if (tmp2->limp[i] & b2n_mask[j]) + if (b2n_add(d, d, tmp)) + goto fail; + + if (b2n_lshift(tmp, tmp, 1)) + goto fail; + } + else if (b2n_lshift(tmp, tmp, CHUNK_BITS)) + goto fail; + + b2n_clear(tmp); + b2n_clear(tmp2); + return 0; + +fail: + b2n_clear(tmp); + b2n_clear(tmp2); + return -1; +} + +/* + * Squaring in this polynomial ring is more efficient than normal + * multiplication. + */ +int +b2n_square(b2n_ptr d, b2n_ptr n) +{ + int i, j, maj, min, bits, chunk; + b2n_t t; + + maj = b2n_sigbit(n); + min = maj & CHUNK_MASK; + maj = (maj + CHUNK_MASK) >> CHUNK_SHIFTS; + + b2n_init(t); + if (b2n_resize(t, + 2 * maj + ((CHUNK_MASK + 2 * min) >> CHUNK_SHIFTS))) { + b2n_clear(t); + return -1; + } + chunk = 0; + bits = 0; + + for (i = 0; i < maj; i++) + if (n->limp[i]) + for (j = 0; j < CHUNK_BITS; j++) { + if (n->limp[i] & b2n_mask[j]) + t->limp[chunk] ^= b2n_mask[bits]; + + bits += 2; + if (bits >= CHUNK_BITS) { + chunk++; + bits &= CHUNK_MASK; + } + } + else + chunk += 2; + + t->dirty = 1; + B2N_SWAP(d, t); + b2n_clear(t); + return 0; +} + +/* + * Normal polynomial division. + * These functions are far from optimal in speed. + */ +int +b2n_div_q(b2n_ptr d, b2n_ptr n, b2n_ptr m) +{ + b2n_t r; + int rv; + + b2n_init(r); + rv = b2n_div(d, r, n, m); + b2n_clear(r); + return rv; +} + +int +b2n_div_r(b2n_ptr r, b2n_ptr n, b2n_ptr m) +{ + b2n_t q; + int rv; + + b2n_init(q); + rv = b2n_div(q, r, n, m); + b2n_clear(q); + return rv; +} + +int +b2n_div(b2n_ptr q, b2n_ptr r, b2n_ptr n, b2n_ptr m) +{ + int i, j, len, bits; + u_int32_t sm, sn; + b2n_t nenn, div, shift, mask; + + /* If Teiler > Zaehler, the result is 0 */ + if ((sm = b2n_sigbit(m)) > (sn = b2n_sigbit(n))) { + if (b2n_set_null(q)) + return -1; + return b2n_set(r, n); + } + if (sm == 0) + /* Division by Zero */ + return -1; + else if (sm == 1) { + /* Division by the One-Element */ + if (b2n_set(q, n)) + return -1; + return b2n_set_null(r); + } + b2n_init(nenn); + b2n_init(div); + b2n_init(shift); + b2n_init(mask); + + if (b2n_set(nenn, n)) + goto fail; + if (b2n_set(div, m)) + goto fail; + if (b2n_set(shift, m)) + goto fail; + if (b2n_set_ui(mask, 1)) + goto fail; + + if (b2n_resize(q, (sn - sm + CHUNK_MASK) >> CHUNK_SHIFTS)) + goto fail; + memset(q->limp, 0, CHUNK_BYTES * q->chunks); + + if (b2n_lshift(shift, shift, sn - sm)) + goto fail; + if (b2n_lshift(mask, mask, sn - sm)) + goto fail; + + /* Number of significant octets */ + len = (sn - 1) >> CHUNK_SHIFTS; + /* The first iteration is done over the relevant bits */ + bits = (CHUNK_MASK + sn) & CHUNK_MASK; + for (i = len; i >= 0 && b2n_sigbit(nenn) >= sm; i--) + for (j = (i == len ? bits : CHUNK_MASK); j >= 0 + && b2n_sigbit(nenn) >= sm; j--) { + if (nenn->limp[i] & b2n_mask[j]) { + if (b2n_sub(nenn, nenn, shift)) + goto fail; + if (b2n_add(q, q, mask)) + goto fail; + } + if (b2n_rshift(shift, shift, 1)) + goto fail; + if (b2n_rshift(mask, mask, 1)) + goto fail; + } + + B2N_SWAP(r, nenn); + + b2n_clear(nenn); + b2n_clear(div); + b2n_clear(shift); + b2n_clear(mask); + return 0; + +fail: + b2n_clear(nenn); + b2n_clear(div); + b2n_clear(shift); + b2n_clear(mask); + return -1; +} + +/* Functions for Operation on GF(2**n) ~= GF(2)[x]/p(x). */ +int +b2n_mod(b2n_ptr m, b2n_ptr n, b2n_ptr p) +{ + int bits, size; + + if (b2n_div_r(m, n, p)) + return -1; + + bits = b2n_sigbit(m); + size = ((CHUNK_MASK + bits) >> CHUNK_SHIFTS); + if (size == 0) + size = 1; + if (m->chunks > size) + if (b2n_resize(m, size)) + return -1; + + m->bits = bits; + m->dirty = 0; + return 0; +} + +int +b2n_gcd(b2n_ptr e, b2n_ptr go, b2n_ptr ho) +{ + b2n_t g, h; + + b2n_init(g); + b2n_init(h); + if (b2n_set(g, go)) + goto fail; + if (b2n_set(h, ho)) + goto fail; + + while (b2n_cmp_null(h)) { + if (b2n_mod(g, g, h)) + goto fail; + B2N_SWAP(g, h); + } + + B2N_SWAP(e, g); + + b2n_clear(g); + b2n_clear(h); + return 0; + +fail: + b2n_clear(g); + b2n_clear(h); + return -1; +} + +int +b2n_mul_inv(b2n_ptr ga, b2n_ptr be, b2n_ptr p) +{ + b2n_t a; + + b2n_init(a); + if (b2n_set_ui(a, 1)) + goto fail; + + if (b2n_div_mod(ga, a, be, p)) + goto fail; + + b2n_clear(a); + return 0; + +fail: + b2n_clear(a); + return -1; +} + +int +b2n_div_mod(b2n_ptr ga, b2n_ptr a, b2n_ptr be, b2n_ptr p) +{ + b2n_t s0, s1, s2, q, r0, r1; + + /* There is no multiplicative inverse to Null. */ + if (!b2n_cmp_null(be)) + return b2n_set_null(ga); + + b2n_init(s0); + b2n_init(s1); + b2n_init(s2); + b2n_init(r0); + b2n_init(r1); + b2n_init(q); + + if (b2n_set(r0, p)) + goto fail; + if (b2n_set(r1, be)) + goto fail; + + if (b2n_set_null(s0)) + goto fail; + if (b2n_set(s1, a)) + goto fail; + + while (b2n_cmp_null(r1)) { + if (b2n_div(q, r0, r0, r1)) + goto fail; + B2N_SWAP(r0, r1); + + if (b2n_mul(s2, q, s1)) + goto fail; + if (b2n_mod(s2, s2, p)) + goto fail; + if (b2n_sub(s2, s0, s2)) + goto fail; + + B2N_SWAP(s0, s1); + B2N_SWAP(s1, s2); + } + B2N_SWAP(ga, s0); + + b2n_clear(s0); + b2n_clear(s1); + b2n_clear(s2); + b2n_clear(r0); + b2n_clear(r1); + b2n_clear(q); + return 0; + +fail: + b2n_clear(s0); + b2n_clear(s1); + b2n_clear(s2); + b2n_clear(r0); + b2n_clear(r1); + b2n_clear(q); + return -1; +} + +/* + * The trace tells us if there do exist any square roots + * for 'a' in GF(2)[x]/p(x). The number of square roots is + * 2 - 2*Trace. + * If z is a square root, z + 1 is the other. + */ +int +b2n_trace(b2n_ptr ho, b2n_ptr a, b2n_ptr p) +{ + int i, m = b2n_sigbit(p) - 1; + b2n_t h; + + b2n_init(h); + if (b2n_set(h, a)) + goto fail; + + for (i = 0; i < m - 1; i++) { + if (b2n_square(h, h)) + goto fail; + if (b2n_mod(h, h, p)) + goto fail; + + if (b2n_add(h, h, a)) + goto fail; + } + B2N_SWAP(ho, h); + + b2n_clear(h); + return 0; + +fail: + b2n_clear(h); + return -1; +} + +/* + * The halftrace yields the square root if the degree of the + * irreduceable polynomial is odd. + */ +int +b2n_halftrace(b2n_ptr ho, b2n_ptr a, b2n_ptr p) +{ + int i, m = b2n_sigbit(p) - 1; + b2n_t h; + + b2n_init(h); + if (b2n_set(h, a)) + goto fail; + + for (i = 0; i < (m - 1) / 2; i++) { + if (b2n_square(h, h)) + goto fail; + if (b2n_mod(h, h, p)) + goto fail; + if (b2n_square(h, h)) + goto fail; + if (b2n_mod(h, h, p)) + goto fail; + + if (b2n_add(h, h, a)) + goto fail; + } + + B2N_SWAP(ho, h); + + b2n_clear(h); + return 0; + +fail: + b2n_clear(h); + return -1; +} + +/* + * Solving the equation: y**2 + y = b in GF(2**m) where ip is the + * irreduceable polynomial. If m is odd, use the half trace. + */ +int +b2n_sqrt(b2n_ptr zo, b2n_ptr b, b2n_ptr ip) +{ + int i, m = b2n_sigbit(ip) - 1; + b2n_t w, p, temp, z; + + if (!b2n_cmp_null(b)) + return b2n_set_null(z); + + if (m & 1) + return b2n_halftrace(zo, b, ip); + + b2n_init(z); + b2n_init(w); + b2n_init(p); + b2n_init(temp); + + do { + if (b2n_random(p, m)) + goto fail; + if (b2n_set_null(z)) + goto fail; + if (b2n_set(w, p)) + goto fail; + + for (i = 1; i < m; i++) { + if (b2n_square(z, z)) /* z**2 */ + goto fail; + if (b2n_mod(z, z, ip)) + goto fail; + + if (b2n_square(w, w)) /* w**2 */ + goto fail; + if (b2n_mod(w, w, ip)) + goto fail; + + if (b2n_mul(temp, w, b)) /* w**2 * b */ + goto fail; + if (b2n_mod(temp, temp, ip)) + goto fail; + if (b2n_add(z, z, temp)) /* z**2 + w**2 + b */ + goto fail; + + if (b2n_add(w, w, p)) /* w**2 + p */ + goto fail; + } + } + while (!b2n_cmp_null(w)); + + B2N_SWAP(zo, z); + + b2n_clear(w); + b2n_clear(p); + b2n_clear(temp); + b2n_clear(z); + return 0; + +fail: + b2n_clear(w); + b2n_clear(p); + b2n_clear(temp); + b2n_clear(z); + return -1; +} + +/* Exponentiation modulo a polynomial. */ +int +b2n_exp_mod(b2n_ptr d, b2n_ptr b0, u_int32_t e, b2n_ptr p) +{ + b2n_t u, b; + + b2n_init(u); + b2n_init(b); + if (b2n_set_ui(u, 1)) + goto fail; + if (b2n_mod(b, b0, p)) + goto fail; + + while (e) { + if (e & 1) { + if (b2n_mul(u, u, b)) + goto fail; + if (b2n_mod(u, u, p)) + goto fail; + } + if (b2n_square(b, b)) + goto fail; + if (b2n_mod(b, b, p)) + goto fail; + e >>= 1; + } + + B2N_SWAP(d, u); + + b2n_clear(u); + b2n_clear(b); + return 0; + +fail: + b2n_clear(u); + b2n_clear(b); + return -1; +} + +/* + * Low-level function to speed up scalar multiplication with + * elliptic curves. + * Multiplies a normal number by 3. + */ + +/* Normal addition behaves as Z_{2**n} and not F_{2**n}. */ +int +b2n_nadd(b2n_ptr d0, b2n_ptr a0, b2n_ptr b0) +{ + int i, carry; + b2n_ptr a, b; + b2n_t d; + + if (!b2n_cmp_null(a0)) + return b2n_set(d0, b0); + + if (!b2n_cmp_null(b0)) + return b2n_set(d0, a0); + + b2n_init(d); + a = B2N_MAX(a0, b0); + b = B2N_MIN(a0, b0); + + if (b2n_resize(d, a->chunks + 1)) { + b2n_clear(d); + return -1; + } + for (carry = i = 0; i < b->chunks; i++) { + d->limp[i] = a->limp[i] + b->limp[i] + carry; + carry = (d->limp[i] < a->limp[i] ? 1 : 0); + } + + for (; i < a->chunks && carry; i++) { + d->limp[i] = a->limp[i] + carry; + carry = (d->limp[i] < a->limp[i] ? 1 : 0); + } + + if (i < a->chunks) + memcpy(d->limp + i, a->limp + i, + CHUNK_BYTES * (a->chunks - i)); + + d->dirty = 1; + B2N_SWAP(d0, d); + + b2n_clear(d); + return 0; +} + +/* Very special sub, a > b. */ +int +b2n_nsub(b2n_ptr d0, b2n_ptr a, b2n_ptr b) +{ + int i, carry; + b2n_t d; + + if (b2n_cmp(a, b) <= 0) + return b2n_set_null(d0); + + b2n_init(d); + if (b2n_resize(d, a->chunks)) { + b2n_clear(d); + return -1; + } + for (carry = i = 0; i < b->chunks; i++) { + d->limp[i] = a->limp[i] - b->limp[i] - carry; + carry = (d->limp[i] > a->limp[i] ? 1 : 0); + } + + for (; i < a->chunks && carry; i++) { + d->limp[i] = a->limp[i] - carry; + carry = (d->limp[i] > a->limp[i] ? 1 : 0); + } + + if (i < a->chunks) + memcpy(d->limp + i, a->limp + i, + CHUNK_BYTES * (a->chunks - i)); + + d->dirty = 1; + + B2N_SWAP(d0, d); + + b2n_clear(d); + return 0; +} + +int +b2n_3mul(b2n_ptr d0, b2n_ptr e) +{ + b2n_t d; + + b2n_init(d); + if (b2n_lshift(d, e, 1)) + goto fail; + + if (b2n_nadd(d0, d, e)) + goto fail; + + b2n_clear(d); + return 0; + +fail: + b2n_clear(d); + return -1; +} |